
- •1 Движение электрона в кристалле. Уравнение Шрёдингера, волновая функция
- •1.2 Движение электронов в атоме
- •1.3 Зонная теория твердого тела
- •Глава 2. Электропроводность полупроводников
- •2.1 Собственные и легированные полупроводники. Уравнение электронейтральности
- •2.2 Статистика электронов и дырок
- •2.2.1 Заполнение электронами зон вырожденного полупроводника
- •2.2.1 Заполнение электронами и дырками зон невырожденного полупроводника
- •2.2 Положение уровня Ферми и расчет концентрации носителей
- •2.2.1 Донорный полупроводник
- •2.3 Электропроводность полупроводников
- •2.3.1 Электронная проводимость
- •2.3.2 Дырочная проводимость
- •2.3.3 Собственная проводимость
- •Глава 3. Неравновесные электронные процессы
- •3.4 Диффузионный и дрейфовый токи
- •3.2. Неравновесные носители в электрическом поле
- •3.2.1. Уравнение непрерывности тока
- •5 Контакт электронного и дырочного полупроводников
- •5.1 Возникновение потенциального барьера. Контактная разность потенциалов.
- •5.2 Вольтамперная характеристика p-n-перехода
- •5.3 Температурные зависимости вах pn-перехода
- •5.3 Влияние генерационно-рекомбинационных процессов на вах pn-перехода.
- •5.4 Барьерная емкость pn-перехода
- •5.5 Диффузионная емкость pn-перехода
- •5.6 Пробой pn-перехода
- •5.6.1 Лавинный пробой pn-перехода
- •5.6.2 Туннельный (полевой, зинеровский) пробой pn-перехода
- •5.6.3 Тепловой пробой pn-перехода
- •5.7 Влияние сопротивления базы на вах pn-перехода. Полупроводниковый диод
- •5.8 Выпрямление на полупроводниковом диоде
- •5.8.2 Переходные процессы в полупроводниковых диодах
- •5.9 Полупроводниковые диоды
- •5.9.1 Выпрямительные диоды
- •5.9.2 Стабилитроны
- •5.9.3 Туннельные диоды
- •6 Биполярные транзисторы
- •6.1 Включение транзистора по схеме с общей базой
- •6.1.1 Статические вольт-амперные характеристики транзистора, включенного по схеме с общей базой
- •6.1.2 Усиление транзистора, включенного по схеме с общей базой
- •6.2 Включение транзистора по схеме с общим эмиттером
- •6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером
- •6.3 Включение транзистора по схеме с общим коллектором
- •6.4. Дифференциальные параметры биполярного транзистора
- •6.4.1 Температурная зависимость параметров биполярных транзисторов
- •6.5 Работа транзистора в импульсном режиме
- •7 Тиристоры
- •7.1 Вольт-амперная характеристика тиристора
- •7.2 Типы тиристоров
- •8 Униполярные транзисторы
- •8.1 Полевой транзистор с управляющим pn- переходом (птуп)
- •8.1.1 Вольт-амперные характеристики птуп
- •Мдп–структура
- •1. Идеальная мдп-структура
- •2 Вольт-амперные характеристики мдп-транзистора
- •8.2.2 Схемы включения мдп-транзистора
- •4.2. Барьер на границе металла с полупроводником (барьер Шоттки)
- •4.2.1 Выпрямление тока на контакте металла с полупроводником
- •Фотоэлектрические полупроводниковые приборы
- •7.2. Полупроводниковые источники оптического излучения
- •10 Классификация интегральных микросхем
- •10.2 Условные обозначения микросхем
- •10.3 Элементы микросхем
- •10.4 Технология изготовления микросхем
- •10.4.1 Корпуса микросхем
5.9.3 Туннельные диоды
Туннельный диод был предложен в 1958 годуЛео Исаки, который в1973 годуполучил Нобелевскую премию по физике за открытие эффектатуннелирования электронов, применяемого в этих диодах.
Туннельным диодом называют полупроводниковый диод на основе p+n+-перехода с сильнолегированными областями, на прямом участке ВАХ которого наблюдается N-образная зависимость тока от напряжения.
Если концентрация доноров и акцепторов в эмиттере и базе диода будет NA, ND~1020 см-3, то концентрация основных носителей будет много больше эффективной плотности состояний в разрешенных зонах pp0, nn0 >> NC, NV. В этом случае уровень Ферми будет находиться в разрешенных зонах p+- и n+-полупроводников. В полупроводнике n+ типа все состояния в зоне проводимости вплоть до уровня Ферми заняты электронами, а в полупроводнике p+-типа - дырками.
Рассчитаем, чему равна геометрическая ширина вырожденного pn-перехода. Будем считать, что при этом сохраняется несимметричность pn-перехода (p+- более сильнолегированная область). Тогда ширина p+n+-перехода мала:
|
(5.73) |
Дебройлевскую длину волны электрона оценим из простых соотношений:
|
(5.74) |
Таким образом, геометрическая ширина p+n+-перехода оказывается сравнима с дебройлевской длиной волны электрона. В этом случае в вырожденном p+n+-переходе можно ожидать проявления квантово-механических эффектов, одним из которых является туннелирование через потенциальный барьер.
На рис. 5.31 показаны зонные диаграммы типичного туннельного диода при обратном и прямом смещении, соответствующие различным точкам на ВАХ.
Поскольку туннельные переходы происходят без рассеяния, то есть с сохранением энергии туннелирующей частицы, то на зонной диаграмме эти процессы будут отражены прямыми горизонтальными линиями.
|
Рис. 5.31 Зонные диаграммы и ВАХ туннельного диода при прямом смещении |
Проанализируем особенности ВАХ туннельного диода. При обратном напряжении ток в диоде обусловлен туннельным переходом электронов из валентной зоны п/п p+-типа на свободные места в зоне проводимости п/п n+- типа. Поскольку концентрация электронов и число мест велики, то туннельный ток резко возрастает с ростом обратного напряжения. Такое поведение ВАХ резко отличает туннельный диод от обычного выпрямительного диода.
При прямом напряжении ток в диоде обусловлен туннельным переходом электронов из зоны проводимости п/п n+- типа на свободные места в валентной зоне п/п p+-типа. На участке 1 при обратном смещении (рис. 5.31,а) электроны валентной зоны p+- области занимают вакантные места в зоне проводимости n+- области без изменения энергии.
При нулевом смещении переходы зона-зона невозможны и ток равен нулю (рис. 5.31,б). При небольшом прямом напряжении напротив электронов зоны проводимости п/п n+- типа начинают появляться свободные места в валентной зоне п/п p+-типа при той же самой энергии. По мере роста напряжения число прямых переходов возрастает, и ток растет с ростом напряжения. Туннельный ток достигает максимума, когда все свободные места в валентной зоне п/п p+-типа оказываются по энергии напротив энергетических уровней, занятых электронами в зоне проводимости п/п n+- типа (рис. 5.31,в). Затем, по мере роста прямого напряжения, число этих свободных мест начинает уменьшаться, поскольку по энергии напротив уровней, занятых электронами в зоне проводимости п/п n+- типа оказываются состояния в запрещенной зоне п/п p+-типа (энергетические уровни в идеальных полупроводниках в запрещенной зоне отсутствуют) (рис. 5.31,г). На этом участке туннельный ток уменьшается с ростом напряжения и превращается в ноль, когда запрещенная зона p+ полупроводника будет находиться по энергии напротив уровней, занятых электронами в зоне проводимости. Это – участок с отрицательным дифференциальным сопротивлением. При дальнейшем росте прямого напряжения появляется компонента обычного диффузионного тока pn-перехода (рис. 5.31,д).
Из
принципа действия туннельных диодов
видно, что процессы в них обусловлены
основными
носителями заряда, а рекомбинация не
играет принципиальной роли. Поэтому
характерное время в туннельных переходах
есть не время жизни неравновесных
носителей, а максвелловское
время релаксации
,
при
1 (Ом∙см)-1
10-12
с. Вследствие этого теоретический предел
частот намного больше, чем у диффузионных
pn-переходов.
Однако предельная частота реальных
приборов понижается вследствие влияния
паразитной емкости и индуктивности
корпуса прибора.
Первый туннельный диод был изготовлен в 1957 из германия; однако вскоре после этого были выявлены другие полупроводниковые материалы, пригодные для получения туннельных диодов: Si, InSb, GaAs, InAs, PbTe, GaSb, SiC и др.
В силу того, что туннельных диод в некотором интервале напряжений смещения имеют отрицательное дифференциальное сопротивление и обладают очень малой инерционностью, их применяют в качестве активных элементов в высокочастотных усилителях электрических колебаний, генераторах и переключающих устройствах.