
- •Глава 1. Научно-техническая революция (нтр)
- •1.1 Черты нтр
- •1.2 Составные части нтр
- •1.3 Научно-технический прогресс
- •Глава 2.Легкие сплавы
- •2.1 Краткие сведения о производстве металлов и сплавов
- •2.2 Строение металлических кристаллов
- •2.3 Дефекты строения реальных кристаллов
- •2.4 Алюминий и его сплавы
- •2.5 Магний и его сплавы
- •2.6 Медь и ее сплавы
- •2.7 Ювелирные сплавы
- •2.8 Титан и его сплавы
- •3.Современные авиационные стали
- •3.1 Введение
- •3.2 Общая характеристика жаропрочных никелевых сплавов
- •3.3Характеристика сплава эп975ид
- •3.4 Выбор температурных интервалов горячей деформации жаропрочных никелевых сплавов
- •3.5 Способы получения штамповок дисков гтд из жаропрочных никелевых сплавов
- •Глава5.Конструкционные композиционные материалы на металлической основе
- •5.1 Композиционные материалы
- •5.2 Слоистые композиционные материалы
- •5.3 Преимущества композиционных материалов
- •5.4 Недостатки композиционных материалов
- •5.5 Области применения
- •5.6 Характеристика
- •5.7 Технические характеристики
- •5.8 Технико-экономические преимущества
- •5.9 Области применения технологии
- •Глава 6.Сверх конституционные материалы
- •6.1 Металлическое стекло
- •6.2 Сплавы с эффектом памяти
- •6.3 Углерод-углеродные материалы
- •5.3 Углеграфитовые материалы
- •5.4 Техническая керамика
- •Глава 6. Композиционный материал на полимерной основе
- •6.1 Стеклопластики
- •6.2 Боропластики
- •6.3 Органопластики
- •6.4 Углепластики
- •6.5 Теплозащитные материалы
- •Глава 7. Примеры эффективного применения новых материалов в технике.
- •7.1 Авиация и космонавтика
- •Глава 8. Современные технологии получения металлических материалов
- •8.1 Производство чугуна
- •8.2 Производство стали
- •8.3 Производство алюминия
- •8.4 Производство магния
- •8.5 Производство меди
- •8.6 Производство титана
- •Глава 9. Современные технологии литейного производства
- •9.1 Способы изготовления отливок
- •9.2 Литье в песчаные формы
- •9.3 Литье в кокиль
- •9.4 Литье под давлением
- •9.5 Литье по выплавляемым моделям
- •9.6 Литье по газифицируемым моделям
- •9.7 Центробежное литье
- •9.8 Литье в оболочковые формы
- •9.9 Непрерывное литье
- •9.10 Требования, предъявляемые к литейным сплавам
- •9.11 Производство отливок из цветных металлов
- •9.11 Производство отливок из чугуна
- •9.12 Контроль качества отливок
- •9.13 Способы исправления литейных дефектов
- •9.14 Непрерывные процессы в металлургии и машиностроении
- •Глава 10. Современные технологии обработки металлов давлением
- •10.1 Прокатка
- •10.2 Определение и классификация процессов прокатки
- •10.3 Волочение
- •10.4 Прессование
- •10.5 Молоты
- •Глава 11. Современные технологии порошковой металлургии
- •11.1 Получение металлических порошков
- •11.2 Формирование порошков
- •11.3 Спекание
- •11.4 Шликерное формирование
- •11.5 Газостат
- •11.6 Обзор методов контроля
- •Глава 12.Современные технологии обработки резание
- •12.1 Основные виды станков
- •12.2 Параметры технологического процесса резания
- •12.3 Алмазное выглаживание
- •12.4 Смазочно-охлаждающая среда
- •12.5 Стойкость инструмента
- •12.6 Классификация металлорежущих станков
- •12.6 Точение
- •Глава 13.Современные технологии сварки и пайки
- •13.1 Сварка металлов. Назначение и преимущества сварки
- •13.2 Газовая сварка ее преимущества и недостатки
- •13.3 Материалы, применяемые при газовой сварке
- •13.4 Аппаратура и оборудование для газовой сварки
- •13.6 Технология газовой сварки
- •13.7 Металлургические процессы при газовой сварке
- •13.8 Структурные изменения в металле при газовой сварке
- •13.9 Особенности и режимы сварки различных металлов
2.7 Ювелирные сплавы
В ювелирном деле часто используются сплавы меди с золотомдля увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Широкое применение меди обусловлено рядом ее ценных свойств и прежде всего высокой электро- и теплопроводностью, пластичностью, хорошей коррозионной стойкостью, хорошей жидкотекучестью и др. Медь и ее сплавы хорошо обрабатываются давлением, свариваются всеми видами сварки и легко поддаются пайке. Механические характеристики чистой меди (прокатанной и отожженной): в = 250...270 МПа: = 40...50 %; = 75%. На структуру и свойства меди существенное влияние оказывают примеси: алюминий, железо, мышьяк, фосфор и сурьма. Они снижают тепло и электропроводность меди.
Медь применяется для изготовления электрических проводов и кабелей, используется в качестве легирующей добавки в различные металлические сплавы; в машиностроении идет на изготовление теплообменников, сварочной проволоки, деталей и узлов подвижного состава железных дорог, судов, самолетов и т. д. на основе меди созданы важные промышленные сплавы (латуни, бронзы, медно – никелевые).
Латунями называют двойные или многокомпонентные сплавы меди, основным легирующим элементом является цинк. Цвет (от красноватого до светло – желтого) и механические свойства латуни изменяются при увеличении содержания в них цинка.
Их маркируют буквой Л, за которой ставится цифра, указывающая на процентное содержание меди, например, латунь марки Л68 содержит 68% меди, остальное – цинк. Если латунь помимо цинка содержит другие элементы (Al, Mn, Si и др.), то после буквы Л ставят условное обозначение этих элементов (А – алюминий, Ж – железо, Н – никель, К- кремний, Т – титан, Мц – марганец и т. д.), а затем цифры, указывающие на среднее содержание элемента. Например, латунь марки ЛАЖМЦ 66-6-3-2 содержит 66% меди, 6% алюминия, 3% железа и 2% марганца, остальное – цинк.
По назначению латуни разделяются на деформируемые (листы, ленты, проволока, трубы и т. д.), и литейные (отливки).
Латунь, содержащая около 15% цинка, имеет золотистый цвет, хорошую стойкость против атмосферной коррозии, и ее используют вместо золота для изготовления медалей и художественных изделий.
Бронзами называют сплавы меди с оловом, алюминием, кремнием, бериллием, кадмием, хромом и другими элементами. Бронзы называют по основным легирующим элементам: оловянные, алюминиевые, бериллиевые, кремнистые и т.д. Обозначают бронзы двумя буквами Бр, затем ставят первые буквы основных легирующих элементов (О – олово, Ж – железо, Ф – фосфор, Б – бериллий, Х – хром и т. д.) и цифры, показывающие процентное содержание. Так, например, БРОФ10-1 содержит 10% олова и 1% фосфора, остальное – медь.
Широкое применение в промышленности находят оловянные бронзы для изготовления водяной и паровой аппаратуры, подшипников, зубчатых колес, пружин и др. Самыми распространенными являются алюминиевые (двойные и сложные) бронзы, превосходящие оловянные по механическим свойствам. Так, БрА7 в отожженном состоянии имеет следующие механические характеристики: в = 420 МПа, = 70%, а БрАЖН10-4-4 - в = 650 МПа, = 40%. Из этих бронз изготовляют мелкие ответственные детали машин. Бериллиевые бронзы (БрБ2 и др.) характеризуются высокой прочностью в = 1200 МПа в закаленном и состаренном состояниях и упругостью, химической стойкостью, свариваемостью и обрабатываемостью резанием. Из них делают мембраны и пружины. Свицовистые бронзы (например, БрС30) являются хорошими антифрикционными материалами для подшипников.