
- •Глава 1. Научно-техническая революция (нтр)
- •1.1 Черты нтр
- •1.2 Составные части нтр
- •1.3 Научно-технический прогресс
- •Глава 2.Легкие сплавы
- •2.1 Краткие сведения о производстве металлов и сплавов
- •2.2 Строение металлических кристаллов
- •2.3 Дефекты строения реальных кристаллов
- •2.4 Алюминий и его сплавы
- •2.5 Магний и его сплавы
- •2.6 Медь и ее сплавы
- •2.7 Ювелирные сплавы
- •2.8 Титан и его сплавы
- •3.Современные авиационные стали
- •3.1 Введение
- •3.2 Общая характеристика жаропрочных никелевых сплавов
- •3.3Характеристика сплава эп975ид
- •3.4 Выбор температурных интервалов горячей деформации жаропрочных никелевых сплавов
- •3.5 Способы получения штамповок дисков гтд из жаропрочных никелевых сплавов
- •Глава5.Конструкционные композиционные материалы на металлической основе
- •5.1 Композиционные материалы
- •5.2 Слоистые композиционные материалы
- •5.3 Преимущества композиционных материалов
- •5.4 Недостатки композиционных материалов
- •5.5 Области применения
- •5.6 Характеристика
- •5.7 Технические характеристики
- •5.8 Технико-экономические преимущества
- •5.9 Области применения технологии
- •Глава 6.Сверх конституционные материалы
- •6.1 Металлическое стекло
- •6.2 Сплавы с эффектом памяти
- •6.3 Углерод-углеродные материалы
- •5.3 Углеграфитовые материалы
- •5.4 Техническая керамика
- •Глава 6. Композиционный материал на полимерной основе
- •6.1 Стеклопластики
- •6.2 Боропластики
- •6.3 Органопластики
- •6.4 Углепластики
- •6.5 Теплозащитные материалы
- •Глава 7. Примеры эффективного применения новых материалов в технике.
- •7.1 Авиация и космонавтика
- •Глава 8. Современные технологии получения металлических материалов
- •8.1 Производство чугуна
- •8.2 Производство стали
- •8.3 Производство алюминия
- •8.4 Производство магния
- •8.5 Производство меди
- •8.6 Производство титана
- •Глава 9. Современные технологии литейного производства
- •9.1 Способы изготовления отливок
- •9.2 Литье в песчаные формы
- •9.3 Литье в кокиль
- •9.4 Литье под давлением
- •9.5 Литье по выплавляемым моделям
- •9.6 Литье по газифицируемым моделям
- •9.7 Центробежное литье
- •9.8 Литье в оболочковые формы
- •9.9 Непрерывное литье
- •9.10 Требования, предъявляемые к литейным сплавам
- •9.11 Производство отливок из цветных металлов
- •9.11 Производство отливок из чугуна
- •9.12 Контроль качества отливок
- •9.13 Способы исправления литейных дефектов
- •9.14 Непрерывные процессы в металлургии и машиностроении
- •Глава 10. Современные технологии обработки металлов давлением
- •10.1 Прокатка
- •10.2 Определение и классификация процессов прокатки
- •10.3 Волочение
- •10.4 Прессование
- •10.5 Молоты
- •Глава 11. Современные технологии порошковой металлургии
- •11.1 Получение металлических порошков
- •11.2 Формирование порошков
- •11.3 Спекание
- •11.4 Шликерное формирование
- •11.5 Газостат
- •11.6 Обзор методов контроля
- •Глава 12.Современные технологии обработки резание
- •12.1 Основные виды станков
- •12.2 Параметры технологического процесса резания
- •12.3 Алмазное выглаживание
- •12.4 Смазочно-охлаждающая среда
- •12.5 Стойкость инструмента
- •12.6 Классификация металлорежущих станков
- •12.6 Точение
- •Глава 13.Современные технологии сварки и пайки
- •13.1 Сварка металлов. Назначение и преимущества сварки
- •13.2 Газовая сварка ее преимущества и недостатки
- •13.3 Материалы, применяемые при газовой сварке
- •13.4 Аппаратура и оборудование для газовой сварки
- •13.6 Технология газовой сварки
- •13.7 Металлургические процессы при газовой сварке
- •13.8 Структурные изменения в металле при газовой сварке
- •13.9 Особенности и режимы сварки различных металлов
13.9 Особенности и режимы сварки различных металлов
Сварка углеродистых сталей
Низкоуглеродистые стали можно сварить любым способом газовой сварки. Пламя горелки должно быть нормальным, мощностью 100-130дм 3/ч
при правой сварке.
При сварке углеродистых сталей применяют проволоку из малоуглеродистой стали св-8 св-10га. При сварке этой проволокой часть углерода, марганца и кремния выгорает, а металл шва получает крупнозернистую структуру и его предел прочности такового для основного металла. Для получения наплавленного металла равнопрочного основному, применяют проволоку св-12гс, содержащую до 0.17% углерода; 0.8-1.1 марганца и 0.6-0.9% кремния.
Сварка легированных сталей
Легированные стали хуже проводят тепло чем низкоуглеродистая сталь, и поэтому больше коробятся при сварке.
Низколегированные стали (например XCHД) хорошо свариваются газовой сваркой. При сварке применяют нормальное пламя и проволоку СВ-0.8, СВ-08А или СВ-10Г2
Хромоникелевые нержавеющие стали сваривают нормальным пламенем мощностью 75дм3 ацетилена на 1мм толщины металла. Применяют проволоку СВ-02Х10Н9, СВ-06-Х19Н9Т. При сварке жаропрочной нержавеющей стали, применяют проволоку содержащую 21% никеля 25% хрома. Для сварки коррозиностойкой стали содержащей молибден 3%, 11% никеля, 17% хрома.
Сварка чугуна
Чугун сваривают при исправлении дефектов отливок, а так же восстановлении и ремонте деталей: заварке трещин, раковин, при варке отколовшихся частей и пр.
Сварочное пламя должно быть нормальным или науглероживающим, так как окислительное вызывает местное выгорание кремния, и в металле шва образуются зерна белого чугуна.
Сварка меди
Медь обладает высокой теплопроводностью, поэтому при ее сварке к месту расплавления металла приходится проводить большое количество тепла, чем при сварке стали.
Одним из свойств меди затрудняющим сварку, является ее повышенная текучесть в расплавленном состоянии. Поэтому при сварке меди не оставляют зазора между кромками. В качестве присадочного металла используют проволоку из чистой меди. Для раскисления меди и удаления шлака применяют флюсы.
Сварка латуни и бронзы
Сварка латуни. Газовую сварку широко используют для сварки латуни, которая труднее поддается сварке электрической дугой. Основное затруднение при сварке состоит в значительном испарении из латуни цинка, которое начинается при 900С. Если латунь перегреть, то вследствие испарения цинка, шов получится пористым. При газовой сварке может испаряется до 25% содержащегося в латуни цинка.
Для уменьшения испарения цинка сварку латуни ведут пламени с избытком кислорода до 30-40%. В качестве присадочного металла используют латунную проволоку. В качестве флюсов применяют прокаленную буру или газообразный флюс БМ-1
Сварка бронзы
Газовую сварку бронзы применяют при ремонте литых изделий из бронзы, наплавке работающих на трение поверхностей деталей слоем антифрикционных бронзовых сплавов и пр.
Сварочное пламя должно иметь восстановительный характер, так как при окислительном пламени увеличиваются выгорание из бронзы олова, кремния, алюминия. В качестве присадочного материала используют прутки или проволоку, близкие по составу к свариваемому металлу. Для раскисления в присадочную проволоку вводят до 0.4% кремния.
Для защиты металла от окисления и удаления окислов в шлаки применяют флюсы тех же составов, что и при сварке меди и латуни.