Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книги_docv / Паронджанов Как улучшить работу ума.doc
Скачиваний:
349
Добавлен:
21.03.2015
Размер:
15.07 Mб
Скачать

Как повысить производительность математического труда?

Развитие математики и логики увенчалось созданием богатого набора формальных правил, использование которых позволяет решать обширный класс математических и логических задач. При разработке этих правил математики преследовали две цели. Первая цель была основной и явно выраженной: обогатить математическое знание. Вторая цель состояла в том, чтобы сделать знаковые системы и математические преобразования по возможности удобными и обозримыми. Эта вторая (эргономическая) цель была скорее интуитивной, чем осознанной и научно обоснованной.

В настоящее время, когда сложность математических знаний превысила “критический порог”, настало время коренным образом изменить подход к проблеме. В математике следует выделить два набора правил:

  • традиционную математическую и логико-математическую формализацию, обеспечивающую достижение математической эффективности;

  • набор эргономических формальных правил, цель которых — добиться эргономической эффективности математических методов.

Необходимо “уравнять в правах” и объединить оба набора. В итоге получим единый набор формальных правил, для обозначения которых выше предложен термин “когнитивная формализация знаний”. Совместное применение правил позволит получить удвоенный выигрыш.

Суть вопроса в том, что повышение производительности математического труда, понимаемое как повышение продуктивности человеческого мозга (мозга математиков), — не столько математическая, сколько эргономическая проблема. Человеческий ум и методы улучшения его работы — предмет изучения не математики, а когнитивной эргономики. Эту мысль следует подчеркнуть особо: эргономический выигрыш в математике есть не что иное как повышение производительности математического труда.

Когнитивная формализация как научная идея, направленная на улучшение работы человеческого ума, — это новорожденный младенец, делающий самые первые шаги, но которому, по нашему мнению, суждено большое будущее.

Два метода визуализации математики

Математический текст в общем случае строится из трех “строительных блоков”:

Диоматематика

=

Словесный текст

+

Формулы

+

Изображения

История математики показывает, что по мере развития математических знаний часть словесного текста постепенно заменяется формулами и изображениями. Указанная замена представляет собой один из важных аспектов эргономизации математики, так как при этом сукцессивное (медленное) восприятие текста заменяется симультанным (быстрым) восприятием формул и изображений.

Важным, хотя и не единственным методом математической эргономизации следует признать визуализацию (замену текста изображе­нием), которая, как отмечает С. Клименко, призвана “делать видимымневидимое”.

Повышение интереса к визуализации породило в США инициативу VISC(Visualization in Scientific Computing), что означает “визуализация в научных вычислениях” [12].

Визуализация математики — это обширная область исследований, охватывающая большое число разнообразных способов и приемов. Среди них выделим два, которые назовем формальным и неформальным методами.

Примером формального метода визуализации является визуальный синтаксис языка ДРАКОН. В самом деле, сравнивая левую и правую части на рис. 90, 91, легко убедиться, что текстовые и визуальные формулы, во-первых, являются строго формальными, во-вторых, эквива­лентны друг другу.

Другим примером формального подхода служит развитие визуального программирования в CASE-технологиях и компьютерных методологиях, а также когнитивной компьютерной графики. В последнем случае используются так называемые “когнитивные изображения”, позво­ляющие показать “внутреннее содержание, идею, суть изображаемого оригинала, которым может быть любое абстрактное научное понятие, гипотеза или теория” [13]. По мнению А. Зенкина, использовавшего идеи когнитивной графики для формального и весьма плодотворного исследования хорошо известной в математике классической проблемы Варинга и ряда других вопросов, этот метод дает возможность “прямого воздействия на сам процесс интуитивного образного мышления исследователя”, в связи с чем “эффективность человеческого мышления, прежде всего в процессе научного познания, способна возрасти уже на многие порядки” [13].

Формальные методы визуализации математики обладают чрезвычайно большим творческим потенциалом. Вместе с тем они имеют очевидный недостаток: каждый такой метод является “штучным произ­ведением искусства”, он появляется на свет в результате индивидуального творческого акта и — в общем случае — не дает никаких прямыхуказаний, никакой явной подсказки, позволяющей поставить дело на поток и “штамповать” подобные изобретения в массовом порядке на воображаемом “математическом конвейере”. От этого недостатка свободен неформальный метод математической визуализации, о котором пойдет речь ниже.