Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекц_курс полн_.doc
Скачиваний:
475
Добавлен:
20.03.2015
Размер:
2.99 Mб
Скачать

Тема 7: мікроорганізми і навколишнє середовище.

1. УЧАСТЬ МІКРООРГАНІЗМІВ У КРУГООБІГУ РЕЧОВИН У ПРИРОДІ.

2. ТИПИ ВЗАЄМОВІДНОСИН МІЖ ОРГАНІЗМАМИ В ПРИРОДІ.

3. ЕКОЛОГІЯ МІКРООРГАНІЗМІВ.

4. МІКРОФЛОРА ОРГАНІЗМУ ЛЮДИНИ. ПАТОГЕННІ МІКРОБИ. ТОКСИНИ. ІНФЕКЦІЯ.

5. ЕВОЛЮЦІЯ МІКРООРГАНІЗМІВ.

1. УЧАСТЬ МІКРООРГАНІЗМІВ У КРУГООБІГУ РЕЧОВИН У ПРИРОДІ.

За своєю роллю та функцією у балансі природи живі орга­нізми поділяються на три групи. Зелені рослини синтезують органічні речовини, використовуючи енергію сонця та вуглекис­лоту, тому їх називають продуцентами. Тварини є споживача­ми (коксументами); вони витрачають значну частину первин­ної біомаси для побудови свого тіла. Рештки рослин і тварин кінець кінцем піддаються розкладанню, в результаті якого орга­нічні речовини перетворюються на мінеральні, неорганічні спо­луки. Цей процес називається мінералізацією. Його здійс­нюють у першу чергу гриби та бактерії, у балансі природи вони служать деструкторами.

Кругообіг вуглецю. У кругообігу вуглецю мікроорганізми забезпечують мінералізацію вуглецю, переведеного зеленими рослинами в органічні сполуки, підтримуючи тим самим досить нестійку рівновагу. Атмосферне повітря містить трохи більше 0,03 % вуглецю. Фотосинтетична продуктивність зелених рос­лин є настільки великою, що запаси СО2 в атмосфері були б вичер­пані приблизно за 20 років. Зеленим рослинам довелося б при­пинити фіксацію СО2, якби нижчі тварини та мікроорганізми не забезпечували повернення цього газу в атмосферу завдяки безперервній мінералізації органічного матеріалу. У загаль­ному балансі речовин у природі ґрунтові бактерії і гриби віді­грають не менш значну роль, ніж фотосинтезувальні зелені рос­лини. Взаємозв'язок усіх живих істот на Землі найчіткіше відоб­ражається у кругообігу вуглецю.

Ще однією особливістю процесу мінералізації є надходжен­ня невеликої частини мінералізованого вуглецю (1,0-1,5 %) в атмо­сферу не у вигляді СО2, а в формі метану (СН4). Цей газ утворюється з органічних речовин у місцях, недоступних для кисню (у ґрунтах тундр, на рисових полях, у рубці жуйних тварин). В утворенні метану беруть участь метаногенні бактерії.

Моря на перший погляд здаються великим резервом вугле­кислоти. Проте слід враховувати, що швидкість обміну СО2 атмо­сфери з СО2 морів, де більш як 90 % цієї сполуки перебуває у формі Н2СО3, є досить низькою: за рік таким чином обмінюєть­ся лише десята частина атмосферного двоокису вуглецю. До того ж у газообміні моря з атмосферою бере участь лише тонкий поверх­невий шар води. Впродовж багатьох останніх років вміст дво­окису вуглецю в повітрі постійно зростає. Це можна пояснити двома причинами: спалюванням нафти та газу і зниженням фото­синтетичної фіксації СО2 в результаті вирубування великих лісо­вих масивів і деградації ґрунтів. Слід зазначити, що Світовий океан являє собою потужну буферну систему, яка намагається підтримувати вміст СО2 в атмосфері на певному рівні.

У результаті фотосинтетичної фіксації СО2 зеленими рос­линами утворюються в першу чергу цукри та споріднені з ними сполуки. Основна маса фіксованого вуглецю як у деревних, так і у трав'янистих рослин відкладається у формі полімерних вугле­водів. Оскільки серед продуктів асиміляції зелених рослин пере­важають полісахариди, то цукри відіграють велику роль у жив­ленні всіх живих організмів, яким потрібна органічна їжа. Глю­коза та інші цукри у формі полімерів є кількісно переважаю­чим субстратом для процесів мінералізації в природі; у вигляді мономерів вони є найкращими поживними речовинами для гетеро­трофних мікроорганізмів.

Кругообіг азоту. Центральне місце у кругообігу азоту займає амоній. Він є продуктом розкладання білків та амінокислот, які разом із рештками тваринного та рослинного походження потрап­ляють у ґрунт. У ґрунтах з високим рівнем аерації амоній під­дається нітрифікації: бактерії родів Nitrosomonas та Nitrobacter окислюють його до нітриту та нітрату. Як джерело азоту росли­ни можуть використовувати як амоній, так і нітрат. За відсут­ності кисню з нітрату утворюється молекулярний азот (процес денітрифікації). Бактерії, які беруть участь у денітрифікації, використовують нітрат як термінальний акцептор електронів у ана­еробному дихальному ланцюгу (анаеробне "нітратне" дихання). Денітрифікація супроводжується втратами азоту з ґрунтів. Разом з цим бактерії здатні і до фіксації молекулярного азоту. Азотфіксувальні бактерії є вільно існуючими та симбіотичними (перебу­вають в симбіозі з вищими рослинами).

Кругообіг фосфору. У біосфері фосфор представлений май­же винятково у вигляді фосфатів. У живих організмів фосфор­на кислота існує у формі ефірів. Після відмирання клітин ці ефіри швидко розкладаються, що супроводжується вивільнен­ням іонів фосфорної кислоти. Для рослин доступною формою фосфору в ґрунтах є вільні іони ортофосфорної кислоти (Н3РО4). їх концентрація часто буває низькою; ріст рослин, як правило, лімітується не загальною недостатністю фосфатів, а утворенням малорозчинних його сполук (апатити, комплекси з важкими металами). У багатьох місцях фосфат з добрив потрапляє у про­точні водойми. Оскільки концентрація іонів заліза, кальцію та алюмінію у водоймах є невисокою, фосфат залишається у роз­чинній формі, що супроводжується евтрофізацією водойм, особ­ливо сприятливою для розвитку азотфіксувальних ціанобакте­рій. У ґрунтах же внаслідок утворення нерозчинних солей фос­фати найчастіше швидко стають недоступними для рослин.

Кругообіг сірки. У живих клітинах сірка представлена сульфогідрильними групами у складі сірковмісних амінокислот (метіонін, цистеїн, гомоцистеїн). У сухій речовині організмів частка сірки становить 1 %. У процесі анаеробного розкладан­ня органічних речовин сульфогідрильні групи відщеплюються десульфуразами; утворення сірководню під час мінералізації в анаеробних умовах називають також десульфуруванням. Проте найбільша кількість сірководню утворюється у процесі дисиміляційного відновлення сульфатів, яке здійснюється сульфатредукуючими бактеріями. Ці бактерії використовують сульфат як термінальний акцептор електронів у анаеробному дихальному ланцюгу ("сульфатне" дихання).

Сірководень, що утворився за відсутності кисню в осадах водойм, може бути окиснений анаеробними фототрофними бак­теріями (Chromatiaceae) до сірки та сульфату. Коли сірководень проникає в зони, що містять кисень, він окиснюється або абіотич­но, або аеробними сіркобактеріями до сульфату. Сірку, необхід­ну для синтезу сірковмісних амінокислот, рослини та частина мікроорганізмів отримують шляхом асиміляційної сульфатредукції; тварини ж отримують відновлені сполуки сірки з їжею.

Фосфор та азот як фактори, що лімітують продукцію біо­маси. Елементами, що обмежують ріст рослин і тим самим продукцію біомаси як на суші, так і в океанах, є фосфор та азот. За даними можна розрахувати, скільки біомаси може бути синтезовано з елементів, які містяться в 1 м3 морської води. Із 28 г вуглецю може утворитися 60-100 г біомаси, з 0,3 г азо­ту — 6, а з 0,03 г фосфору — лише 5 г. Отже, продукцію біомаси лімітують в основному фосфати. У морській воді навіть азотфіксувальні організми — ціанобактерії — не мають селективної пере­ваги над іншими.