 
        
        Algebra_10kl_RU
.pdf 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π + 2πn), n Z; 4) ( | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | πn | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | πn | ), n Z. 6. 1) | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| n Z; 3) − | 
 | 
 | 
 | 
 | 
 | + 2πn; | 
 | 
 | 
 | + | 
 | 
 | ; | 
 | 
 | + | 
 | πn; | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | + πn , | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | 3 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 20 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||
| n Z; 2) | 
 | 
 | (− | π | + | 
 | πn | ; | 
 | 
 | π | + | 
 | 
 | πn | ), n Z; 3) | − | 9π | + 6πn; 6πn | , n Z; 4) (− | π | + | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 36 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 48 | 
 | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||
| 
 | 
 | + | πn | ; | 
 | 
 | 5π | + | πn | 
 | ), n Z. 7. 1) | (− | 2π | − | 2πn | 
 | ; − | 2πn | ), n Z; | 
 | 
 | 2) | 
 | 
 | 
 | − 7π + | πn | ; | 
 | 
 | 
 | π | + | πn | 
 | , | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 2 48 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 9 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 60 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 60 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| n Z; 3) (− | 3π | 
 | + 2πn; 2πn), n Z. 8. 1) ( | 
 | π | + | 
 | πn | ; | π | + | 
 | 
 | πn | ), n Z; 2) | 
 | 
 | (− | 
 | 
 | π | + πn; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 2 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||
| 
 | − | π | + πn) | ( | π | + πn; | π | 
 | + πn), n Z. 9. 1) ( | πn | ; | π | + | πn | ), n Z; 2) (− | π | + | πn | ; | 
 | 
 | π | + | πn | ), | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 12 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 2 | 
 | 
 | 
 | 6 | 2 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 − 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 − 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( | 
 | 
 | 
 | 
 | 
 | 
 | 3π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| n Z. 10. 1) | arcsin | 
 | 
 | 
 | + 2πn; π − arcsin | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn | , n Z; 2) | − | + πn; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | + πn), n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||
| 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | (− | 3π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | + 2πn), n Z. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | Z. 11. 1) | 
 | − | 3 | 
 | +2πn; | 
 | 
 | + 2πn , n Z; 2) | 
 | 
 | 
 | 
 | 
 | + 2πn; | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 12. 1) (πn; | 
 | π + πn) ( | 
 | π | 
 | + πn; | 3π | + πn) ( | 5π | + πn; | 2π | + πn) | 
 | 
 | ( | 7π | + πn; π + πn), | 
 | n Z; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | + πn) | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn), | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2) | 
 | 
 | 
 | 
 | π | 
 | + πn; | π | ( | 
 | π | + πn; | 3π | + πn), | 
 | n Z. 13. 1) | 
 | 
 | π | + 2πn; | 3π | n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 2) arcsin | 
 | 
 | 
 | 1 | 
 | 
 | + 2πn; | π | + 2πn , | n Z. 14. 1) | 
 | 
 | 
 | (− | π | 
 | + 2πn; − | 2π | + 2πn) ( | − | 2π | +2πn; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||
| 2πn) ( | 
 | π | + 2πn; | 4π | 
 | + 2πn) ( | 4π | + 2πn; | 6π | 
 | + 2πn) ( | 6π | 
 | + 2πn; π + 2πn), n Z; 2) (− π + | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | ||||||||||||||||||||||||||||||||||||||||
| 
 | + 2πn; | π | + 2πn) ( | π | + 2πn; | 3π | + 2πn) ( | 5π | + 2πn; | 5π | + 2πn), n Z. 15. | (− | 7π | ; − π | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 0; | π | ). | 16. | 
 | 
 | 
 | 
 | π | ; | 
 | 
 | 3π | 5π ; | π . | 17. 1) | 
 | 
 | 
 | 
 | При | 
 | a | 
 | m –2 x | (2πn; | π | + 2πn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 12 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||
| ( | 
 | 3π | + 2πn; π + 2πn) | ( | 5π | + 2πn; | 7π | + 2πn), n Z; при −2 < a < − | 2 | 
 | 
 | x (2πn; | π | + | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 4 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | |||||||||||||||||
| + 2πn) (3π + 2πn; arccos a + 2πn) (π + 2πn; 2π − arccos a + 2πn) | ( | 5π + 2πn; 7π + | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||
| 
 | +2πn), n Z; при | 
 | 
 | 
 | 
 | 
 | a = − 2 | 
 | x (2πn; | π | 
 | + 2πn) (π + 2πn; | 5π | + 2πn) ( | 5π | 
 | + 2πn; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 
 | 7π | 
 | + 2πn), | 
 | 
 | 
 | n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Z; | 
 | 
 | 
 | 
 | при | 
 | 
 | 
 | − 2 < a < 2 | 
 | 
 | 
 | 
 | x (2πn; | π | + 2πn) | (arccos | a | + 2πn; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 3π | + 2πn) (π + 2πn; | 5π | + 2πn) (2π − arccos | a | + 2πn; | 7π | + 2πn), n Z; при a = 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| x (2πn; π + 2πn) | (π + 2πn; 3π + 2πn) | (π + 2πn; 5π + 2πn), n Z; при | 
 | 
 | 2 < a < 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||
432
| x (2πn; arccos | a | + 2πn) ( | π | + 2πn; | 
 | 3π | 
 | + 2πn) (π + 2πn; | 5π | + 2πn) | ( | 7π | + 2πn; 2π − | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| −arccos | a | + 2πn), n Z; при a l 2 | 
 | x ( | 
 | 
 | π | + 2πn; | 3π | + 2πn) | (π + 2πn; | 5π | 
 | 
 | + 2πn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 4 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | |||||||||||||||
| ( | 7π | 
 | + 2πn; 2π + 2πn), n Z. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||
| 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | Дополнительные упражнения. 1. 1) − π + 2πn, n Z; 2) 2πn, n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 3) (−1)n+1 π + πn, n Z; 4) | ± | π | + 2πn, | 
 | n Z. 2. 1) πn, n Z; 2) π + 2πn, n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 3) πn, π + πn, n Z; 4) | 
 | π | + π n , − | π | 
 | + π n , | n Z. 3. 1) π + 2πn, 4πn, n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2 | 6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 2) 2πn, π + 4πn,n Z; 3) | π | + πn, n Z; 4) − π + πn, n Z. 4. 1) | π | + πn, arctg 2 + πn, | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| n Z; 2) | 3π | + πn, − arcctg 2 | + πn, n Z; 3) | 
 | π | 
 | + 2πn, n Z; 4) | 2πn, ± | π | + 2πn, n Z. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | (− | 
 | 
 | )+ 2πn, | |||||||||||
| 5. 1) | π | + | πn | , | (−1)n | π | + πn , n Z; 2) | πn | , ± | π | + πn, n Z; 3) 2πn, ± arccos | 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | 
 | 
 | 2 | 
 | 
 | 12 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | ||||||||||||||||||||||||
| n Z; 4) | 
 | (−1)n | π | + πn, (−1)narcsin | 1 | + πn, n Z. 6. 1) 2πn, (−1)n | 2π | + 2πn, n Z; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 2) π + 2πn, ± | 5π | + 4πn, n Z; 3) | πn | ; ± | π | + | πn | , | n Z; 4) | π | + | πn | ; ± | π | + | πn | , n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 12 | 
 | 2 | 
 | 4 | 2 | 
 | 6 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 7. 1) | π | + πn, ± | π | + 2πn, ± | 2π | + 2πn, | n Z; 2) πn, ± | π | + πn, n Z; 3) | πn , | 
| 
 | ||||||||||
| 2 | 3 | 3 | 
 | 6 | 
 | 2 | ||||
| (−1)n | π | + | πn | , n Z; 4) | π | + | πn | , ± | π | + πn, n Z. 8. 1) π + 2πn, ± | 4π | + 4πn, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 2 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | n+1 π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3π | 
 | 
 | 
 | π | 
 | , π; | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| n | Z; 2) | (−1) | 
 | 
 | 
 | 
 | 
 | 6 + πn, n | Z; 3) πn, n | Z; 4) 2 | + πn, n | Z. 9. 1) − | 2) 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 2 ; | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3) 67,5°; 4) 240°. 10. 1) | 5π | ; 2) 2π; 3) | π | , | 
 | 
 | 3π | ; 4) | 
 | 
 | π | . 11. 1) | 
 | πn | , ± | π | + | πn | , | 
 | n Z; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 6 | 
 | 
 | 
 | 5 | 2 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 2) | 
 | π | + | πn | , ± | π | + | πn | , | n Z; 3) | 
 | 
 | π | + πn, | 
 | 
 | ± | 
 | π | + πn, n Z; 4) | π | + | πn | , (−1)n π + πn, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 4 | 
 | 2 | 
 | 
 | 6 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| n Z. 12. 1) | 
 | π | 
 | + πn, | 
 | –arctg 3 + πn, n Z; 2) | 
 | 
 | π | + πn, –arctg 2 + πn, | 
 | n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 4 | 4 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | π | + πn, | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 3) | 
 | – arctg 15 + π n, | 
 | n Z; 4) | 
 | 
 | 
 | + πn, arcсtg 13 + π n, | n Z. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 13. 1) − π + 2πn, n Z; 2) | π | + | πn | , | π + 2πn, n Z; 3) π + 2πn, n Z; 4) | π | + 2πn, | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| n Z; 14. 1) | π | + 2πn, | 
 | π | + | πn | , n Z; 2) | π | + | πn | 
 | , 2πn, n Z; 3) | π | + πn, n Z; 4) | πn | , | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | ||||||||||||||||||||||
| n Z. 15. 1) | 
 | − | π | + 2πn, π + 2πn, n Z; 2) | 
 | 
 | π | + 2πn, π + 2πn, n Z; 3) | 
 | πn | , n Z; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 3 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
433
 
| 4) | 
 | 
 | πn | , | n Z. 16. 1) | πn | , | n Z; 2) | π | + | πn | , n Z; 3) | π | + 2πn, | π + 2πn, n Z; | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 4 | 
 | 4 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | π | + 2πn, 2πn, n Z. 17. 1) ± | π | + | πn | 
 | 
 | 
 | 
 | 
 | Z; 2) | 
 | (−1)n | 
 | 
 | 
 | 
 | 
 | ( | 
 | ) | 
 | πn | 
 | n Z; | |||||||||||||||||||||||||||
| 4) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | , n | 
 | 
 | 
 | 
 | arcsin | 
 | 3 | − 1 + | 
 | , | |||||||||||||||||||||||||||||||||||||
| 2 | 6 | 2 | 
 | 2 | 
 | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 3) | 
 | 
 | π | + | πn | , | − | π | + πn, n Z; 4) | πn | , | (−1)n | π | + | πn | , n Z. 18. 1) π + 2πn, | π | + πn, | |||||||||||||||||||||||||||||||||||||
| 
 | 
 | 6 | 
 | 
 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 21 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | π 2πn | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | + πn, | 2πn | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | n | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 5 | 
 | + | 
 | 
 | 5 | , n | 
 | Z; 2) π + 2πn, | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | , n | 
 | Z; 3) | − 4 + | (−1) | 
 | arcsin 5 2 + πn, n | 
 | Z; | |||||||||||||||||||||||||||
4) − π + πn, n Z. 19. 1) (−1)n+1 π + πn , n Z; 2) ± π + πn, n Z; 3) (−1)n π + πn ,
| 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 24 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 18 | 
 | 
 | 3 | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π πn | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | + | 
 | πn | 
 | 
 | 
 | 
 | , | π | + | πn | , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2πn | 
 | 
 | 2π | 2πn | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| n | 
 | 
 | Z. 20. 1) πn, 6 + 3 | , n | 
 | 
 | Z; 2) | 10 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 2 | 
 | 
 | 
 | n | 
 | 
 | 
 | Z; 3) | 3 | 
 | 
 | , | 9 + | 3 | 
 | , | n | 
 | 
 | 
 | Z; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4) − arcsin | 
 | 
 | 5 | 
 | 
 | + (−1)narcsin | 4 | 
 | 
 | 
 | + πn, | 
 | 
 | n Z. 21. 1) 2πn, | 
 | − π + 2πn, | 
 | n Z; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 34 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 34 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 3) | 
 | ± | 1 | arcctg | 
 | 
 | 
 | 2 + | πn | , ± | 
 | 1 | arcctg | 
 | 
 | 
 | 5 + | 
 | πn | 
 | , n Z; 4) | ± | π | + πn, n Z. 22. 1) –2; 2) 7; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 3) 0; 4) ä0,5; 1. 23. 1) 0; | ± | 
 | 4π | ; | 
 | ± | 8π | ; | 2) | 
 | 
 | 
 | − | 10π | ; | − 2π; | − | 2π | ; 3) 6 + | 
 | 2 ; | 
 | 4) 1,75. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 24. 1) | 
 | 1 | ; | 
 | 
 | 3 | ; 2) 1; 3) | 
 | 
 | 3 | ; 4) корней нет. 25. 1) 0; 2) 1; 3) | ± | 
 | 
 | 2; 4) 0. 26. 1) πn, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2 | 2 | 
 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | − | 7π | + 2πn, − | 11π | + 2πn, n Z; 2) | 
 | − π + 2πn, n Z; 3) − arccos | 
 | 
 | 
 | 5 − 1 | + 2πn, n Z; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 12 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 4) | 
 | (−1)n | π | 
 | + πn, n Z. 27. 1) | 
 | (π − arccos | 12 | + 2πn; 2), n Z; 2) | (−arccos | 3 | 
 | + 2πn; 1), | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 13 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| n Z; 3) | ( | π | + 2πn; 2), n Z; 4) (2πn; 1), n Z. 28. 1) | (− | π | + πn; | π | 
 | + πn), n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 2) (− | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | + πn), n | Z; 3) ( | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn), | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||
| π | + πn; | π | 
 | π | + 2πn; | 
 | 2π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | + 2πn, | 
 | 
 | 
 | 7π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | n Z; 4) | 
 | 
 | 
 | 
 | − | 6 | + | 2πn; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 6 | 
 | 6 | 3 | 3 | 
 | 
 | 2 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Z. 29. 1) (− | π | + 2πn; 2πn) (2πn; | π | + 2πn), n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( | π | + 2πn; | 
 | π | + | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 6 | + 2πn , | 
 | 
 | n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Z; 2) | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 3 | 3 | 
 | 6 | 
 | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| + 2πn) ( | π | + 2πn; | 5π | + 2πn), n Z; 3) | 
 | 
 | 
 | 
 | (− | π | + | πn | ; | 
 | π | + | πn | ), | 
 | n Z; 4) (− | 7π | + | πn | ; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12 | 
 | 2 | 
 | 
 | 12 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 24 | 
 | 
 | 
 | 2 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | π | + | πn | ), | 
 | 
 | n Z. 30. 1) | 
 | 
 | (− | 3π | + | 3πn | ; | 
 | 3π | + | 3πn | ), | 
 | n Z; 2) | (− | π | + | πn | ; | π | + πn ), | n Z; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 24 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 2 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 3) | 
 | (− | π | + 2πn; | π | + 2πn), n Z; 4) (− | π | + | 2πn | ; | 2π | + | 2πn | ), n Z. 31. 1) | (−arctg 2 + πn; | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 9 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 9 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| π + πn), n Z; 2) (− | π | + πn; | π | + πn) ( | π | + πn; | π | + πn), n Z; 3) (πn; | 
 | π | + πn | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||
434
 
| 3π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3π | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | + πn; π + πn), n Z; 4) πn; | 
 | 
 | 
 | 
 | + πn , | n Z. 32. 1) | (− | 
 | 
 | 
 | + | 2πn; | 
 | 
 | 
 | + 2πn) ( | 
 | 
 | 
 | 
 | 
 | 
 | + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 4 | 6 | 4 | 4 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| + 2πn; | 5π | + 2πn) ( | 7π | + 2πn; | 5π | + 2πn) ( | 7π | 
 | + 2πn; | 11π | 
 | + 2πn), n Z; 2) (2πn; | π | + 2πn) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||
| ( | 
 | + 2πn; | 
 | 
 | 
 | + 2πn) ( | 
 | 
 | 
 | 
 | + 2πn; π + | 2πn) (π + 2πn; | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn) | 
 | 
 | 
 | ( | 
 | 
 | 
 | + | 2πn; | 
 | 
 | 
 | 
 | 
 | + 2πn) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | 3 | 4 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 3 | 
 | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ( | 7π | + 2πn; 2π + 2πn), | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | n | Z; 3) −arctg | 3 | + πn; | 4 | + πn , n Z; 4) | − | 6 | 
 | + πn; arctg 2 + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Z. 33. 1) ( | π | + | 2πn; | 
 | 2π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5π | 
 | 2πn; π + 2πn) (π + 2πn; | 3π | + 2πn) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| + πn , n | 
 | 2 | 3 | 
 | + 2πn | 
 | 
 | 
 | 6 | + | 2 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 
 | 
 | 5π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 11π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | + 2πn; | 
 | 
 | 
 | 
 | 
 | 
 | + | 2πn , | 
 | 
 | n Z; 2) | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn; | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn; | 
 | 
 | 
 | 
 | 
 | 
 | 
 | + 2πn | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 4 | 6 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 7π + 2πn; 5π + 2πn | 
 | 7π + 2πn; | 
 | 11π + 2πn , | n | 
 | Z. 34. 1) | ( | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 n; | − | 
 | π | 
 | 
 | 
 | 2 n) | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | −π + π | 
 | 
 | 
 | 2 | + π | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 2 | 
 | 
 | 
 | π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3π | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | − | 3π | + 2πn; | 
 | 
 | 
 | π | + 2πn | 
 | ||||||||||||||||||||||||||||||||||||||||||||
| arcsin | − | + 2πn; | − arcsin | 
 | + 2πn , | 
 | n Z; 2) | 
 | 
 | 
 | 
 | 
 | , | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 3 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| n Z; 3) | 
 | ( | π | + πn; | π | + πn) | ( | π | 
 | + πn; | 2π | + πn) | ( | 
 | 3π | + πn; | 3π | + πn) ( | π | + πn; | 4π | + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 4 | 
 | 
 | 8 | 
 | 2 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| + πn) ( | 5π | + πn; | 5π | + πn) | ( | 3π | + πn; | 6π | + πn) ( | 7π | 
 | + πn; π + πn), n Z; 4) (2πn; | π | + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| +2πn (π +2πn; | 3π | + 2πn (π +2πn; | 2π | +2πn | 
 | 
 | 5π | + 2πn; π + 2πn) | 
 | 9π | + | 2πn; | 4π | + | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||
| + 2πn) ( | 3π | + 2πn; | 11π | 
 | + 2πn ( | 5π | 
 | + 2πn; | 13π | + 2πn | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | , | 
 | 
 | n Z. | 35. | 
 | 
 | 1) | 
 | 
 | 
 | 
 | −1; | 
 | ; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | |||||||||||||||||||||||||||||
| 2) (0,5; 1]; 3) [–1; sin 0,5) (sin 1; 1]; 4) [–1; cos 2). 36. 1) | 
 | ( | 17π | + 2πn; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 36 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| π + 2πn) | ( | 53π | + 2πn; | 35π | + 2πn), | n Z; 3) | (–×; | 1) (1; | 
 | ×); | 
 | 4) | 
 | (0; | 
 | 
 | 1). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 36 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 18 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
37. 1) 0 m а m 3; 2) –4,5 m а m 4,5. 38. 1) [0,6; 1]; 2) [0,6; 1]; 3) [0,5; 1];
| 4) | 0,5; | 120 . | 39. 1) | π | n, n | 
 | Z; 2) | π | + π | n | 
 | Z. 40. 1) a | − | 2 6 | или a 2 6; | 
| 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 2 | n, | 
 | 
 | ||||||||
| 
 | 
 | 169 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
2) a − 4 6 или a 4 6.
435
 
Рaздeл 3
§23. 2. 1) –2; 2) 0,5; 3) –1; 4) 2; 5) 5; 6) 3. 3. 1) 20; 2) 10; 3) 6; 4) 35 16.
4.1) 3; 2) 10; 3) –2; 4) 5. 5. 1) –2; 2) 3; 3) –5; 4) 2. 6. 1) 77; 2) 6; 3) 15; 4) 5.
| 7. 1) 108; 2) 200; 3) 0,9; 4) 1 | 1 | . 8. 1) R; 2) [3; +×); 3) [–2; +×); 4) (0; +×). | ||||||||||||||||||||
| 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 10. 1) | 37 64 | ; 2) | 2( | 7 + 1) | ; 3) при а = 9 | 1 | ; при 0 ma < 9 или a > 9 | 
 | 
 | a − 3 | ; при a < 0 | |||||||||||
| 
 | 
 | 6 | ||||||||||||||||||||
| 2 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a − 9 | |||||
| выражение не определено; 4) при x = 1 | 1 | ; при х ≠ 1 | 3 x − 1 | . 11. 1) a2b5 ab2 ; | ||||||||||||||||||
| 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | x − 1 | 
 | 
 | 
 | 
 | 
 | ||||||
| 2) ab3 4 a3b; 3) −3ab4 3 a2b2 ; 4) 2ab2 6 2a3b5 . 12. 1) | 
 | ab3 | 
 | 
 | 
 | b | 
 | ; 2) ab7 a2b; | ||||||||||||||
| 
 | 
 | 
 | 
 | |||||||||||||||||||
3) 2a2b6 b; 4) a2 b 8 ab. 13. 1) 3 7a3 ; 2) −4 ab5 ; 3) 7 5a7b7 ; 4) 6 a7b. 14. 1) При
| a l 0 4 7a4 ; при a < 0 −4 7a4 ; 2) 7 a22b; 3) 6 2ab7 ; 4) | 8 −3b11. 15. 1) –a; 2) a; 3) 0; | ||||||||||||||||
| 4) 0. 16. 1) 2 | 
 | a | 
 | b2 4 2; 2) ab2c; 3) 20 | 
 | a | 
 | 17 ; 4) | 60 2 12 | 3 30 | 
 | a | 
 | 11 . 17. 1) 3 a2 + 3 b2 ; | |||
| 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 2) | 4 y; 3) | 3 b (6 a − 6 b ) | ; 4) при x l 0, y > 0 −6 | x; при x m 0, y < 0 6 x. 18. 1) 3 7; | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | a | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | y | |||
| 2) | ±6 3; 3) −5 5; 4) корней нет; 5) ä2; 6) –4. | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
§ 24. 1. 1) 3; 2) корней нет; 3) –26; 4) 0; 5) 45. 2. 1) 8; 2) 2. 3. 1) 2; 2) 10; 3) 4; 4) 7. 4. 1) 3; 2) –5; 3) –11; 4) –8; 5. 5. 1) 1; 2) 3; 3) 0; 4) ± 2. 6. 1) 1; 2; 10; 2) –1. 7. 1) (8; 0); 2) (4; 1); 3) (4; 1); 4) (16; 1). 8. 1) (27; 1), (1; 27); 2) решений
нет; 3) (− 57 ; − 73 ); 4) (0,5; 1,5).
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 1 | 
 | 5 | 
 | |||
| § 25. Пункт 25.1. 1. 1) | 2; 2) | 5 | ; | 3) 4 5; 4) 7 | ; 5) | 8; 6) 3 | 1 | . 2. 1) 36 | ; | ||||||||||||
| 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 9 | 
 | 64 | 49 | 
 | 
 | |||||||
| 1 | 
 | 3) 7− | 9 | 
 | a− | 2 | 1 | 
 | 
 | 
 | 
 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 2) 45 | ; | 2 | ; 4) | 9 ; 5) | (2b) 4 | ; | 6) | c | 11 | . 3. 1) Нет; 2) да; 3) да; 4) нет. | |||||||||||
4. 1) [0; +×); 2) (–×; 0) (0; +×); 3) (1; +×); 4) [–3; +×); 5) (–×; –1) (–1; 1)
| (1; +×); 6) R. 5. 1) 9; 2) | 
 | 3 | ; 3) 32; 4) | 
 | 9 | 
 | ; 5) 8,2; 6) 6,75; 7) 3,25. 7. 1) | 
 | 1 | 
 | ; | |||||||||||
| 8 | 625 | 
 | 1 | 1 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a2 − b2 | 
 | 
 | ||
| 
 | 1 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | − l | 1 | 
 | 
 | 1 | 
 | 
 | ; | 
| 
 | 
 | 
 | 1 | 1 | 8. 1) 1 + c; 2) x + y; 3) x – 1; 4) k | 2 | 2 | . 9. 1) | 
 | 
 | ||||||||||||
| 2) | 
 | ; 3) | 
 | ; 4) m3 | + n3. | 
 | 
 | 1 | 
 | 
 | 
 | |||||||||||
| 1 | 1 1 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | p 2 + 5 | 
 | 
 | c 2 − d2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x 2 + 4 | |||
| 
 | 2 | 1 | 1 | 2 | 1 | 
 | 
 | 
 | 1 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ±4 | 
 | 
 | 
 | |
| 2) | a3 + a3b3 + b3; | 3) z3 − 2; 4) | a3 + b3. | 10. 1) 1; 2) 128; 3) | 4 | 
 | 2; 4) | 2. | ||||||||||||||
Пункт 25.2. 1. 1) R; 2) (–×; 0) (0; +×); 3) [1; +×); 4) (0; +×); 5) (–×; 0][1; +×); 6) R.
436
 
§26. Пункт 26.1. 1. 1) –1; 2) 3. 2. 1) 0; 2) 0; 3) корней нет; 4) 3. 3. 1) 1;
2)(4; 25). 4. 1) 8; 2) 4; 3) 2; 4) 1, –1. 5. 1) (16; 16); 2) (4; 4). Пункт 26.2.
| 1. 1) | 13 − | 61 | 
 | ; 2) –3; 1; 3) 4; 4) 4. 2. 1) 1; 2) [5; 8]. 3. 1) | 1 | 2 | ; 2) | 2 − 2 | 2; | 1 + 5 | . | |||||
| 
 | 
 | |||||||||||||||
| 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 2 | 
 | ||
| 4. 1) | 15 + 3 | 5 | 
 | ; 2) –1. 5. 1) 32; 2) 64. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 10 | 
 | 
 | 
 | ). 2. 1) | (−∞; − 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| § 27. 1. 1) (–×; –3]; 2) (−∞;0] 3;3 | 4 | 
 | [3; + ∞ ); 2) (–×; 0] | |||||||||||||
| 7 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 6 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
[1; +×). 3. 1) –2; [–1; 3]; 2) –3; (–0,5; 1]. 4. 1) [2; +×); 2) [10; +×).
| 5. 1) | 
 | − 2 | ) 2) [0; 4) (9; +×). 6. 1) (–×; –3] (0; +×); 2) (–×; –2) | 
| 
 | 3 | 2; 9 ; | 
(0; 1) (1; +×). 7. 1) [2; 5,2]; 2) [1; 5) (10; +×). 8. 1) Решений нет; 2) 2; 3. У к а з а н и е. Найти ОДЗ неравенства и учесть, что в нее входят только два числа.
§ 28. 1. 1) При a R x = a + 4; 2) при a l 0 x = a2 – 2a; при a < 0 корней нет;
| 3) при m m 0 или m > 3 корней нет; при 0 < m m 3 x = | m4 − 6m2 + 81 | ; 4) при a = 0 | |
| 4m2 | |||
| 
 | 
 | 
x = 0; при a l 1 x = −1 + 4a − 3 ; при a < 0 или 0 < a < 1 корней нет. 2. 1) При
2
a m 1 x = a; при 1 < a < 2 х [1; a]; при a = 2 х [1; 2); при a > 2 х = а или х [1; 2); 2) при a < 0 решений нет; при a = 0 х (0; +×); при a > 0
| 
 | 
 | 
 | 
 | 
 | 4 | a; − a) (0; | + ∞ ); 3) при a m–4 решений нет; при –4 < a m0 x (2 − | 4 + a; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| x − | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4 + a ); 4) при a m− | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 2 + | 4 + a ); при a > 0 x − | 
 | ;2 + | 
 | 
 | 
 | 
 | 
 | 
 | x a; | −3 + −7 − 16a | ; | |||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 2 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 4 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| при | 
 | 
 | − | < a < − | 
 | x | −3 − | −7 − 16a | ; | −3 + −7 − 16a | ; | 
 | при a = − | 7 | 
 | x = − | 3 | ; | 
 | при | |||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 16 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 16 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| a > − | 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 − 2a | 2 | − 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | решений нет; 5) при a < –2 или a > 2 x | 
 | 
 | ; | a | 
 | ; | 
 | при | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 16 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | − | 
 | 2a | 2 | − 4 | 
 | 
 | 2 + | 2a | 2 | 
 | − 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| −2 a < − 2 или | 2 < a 2 | x | 2 | 
 | 
 | ; | 
 | 
 | 
 | ; при − | 
 | 2 a | 2 ре% | ||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| шений нет. 3. a m5,125. 4. a < 0, a = | 
 | 2. 5. a m1. 6. При a m1 одно решение; при | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| a > 1 решений нет. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( | 
 | 3 ) | 
 | 
 | 
 | 
 | 
 | 
 | 3 ( 5 + | 2 ) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| 
 | Дополнительные упражнения. 1. 1) | 
 | 
 | 2 | 5 − | ; 2) | 
 | 
 | 
 | ; 3) | 2 15 | ; | |||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 3( | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 ) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 15 | 
 | 
 | 
 | ||
| 4) | 
 | 
 | 
 | 7 − | . 2. 1) 0; 2) 1; 3) | 
 | 
 | 2 − 0,75; 4) 1. 3. 1) | 
 | 
 | 
 | 
 | 1 | 
 | ; | 2) 1; 3) х – 1; 4) | 
 | 1 − c | . | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | a + | 2 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | c | ||||||||||||
| 4. 2) | 
 | 
 | 1 | ; | 
 | 3) − | 4 | x. | 5. 1) х + 1; 2) | ab | 41 ( | a | 41 | + b | 41 ) | 3) | 1 | . | 6. 1) корней нет; 3) –2; 3; | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 8b | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ; | 
 | 3y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 4) 3. 7. 1) 2; 3) 2; 4) 7. 8. 1) | − | 1 | ; 2) | 
 | 1 | ; | 
 | 3) [5; 10]; 4) [7; 14]. 9. 1) 8; 2) корней | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 11 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
437
 
| нет; 3) –3; 6; 13; 4) 1; 2; 10. 10. 1) 8; | 56 ± 12 21 | ; 2) 1; 1,5; 2; 4) 64. | |||||||
| 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 7 | 
 | ||
| 
 | 1 − | 5 | 
 | 3 + | 5 | 
 | |||
| 11. 1) | ; | ; 2) (0; 1); 3) решений нет; 4) решений нет. 12. 1) (t + 1; t), | |||||||
| 4 | 
 | 
 | 
 | ||||||
| 
 | 4 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 1 | 
 | 3 | 5 | 
 | 
 | 4) (2; 3); (4 | 1 | ; − 1 | 2 | ). | |
| t Z; 2) (5; 4); (–0,5; –0,4); 3) | 
 | 1 | + | 5; | − | 
 | ; | |||||||||
| 
 | 
 | 2 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 3 | 3 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 13 − 1 | 
 | ||
| 13. 1) [–2; +×); 2) [0; +×); 3) [0; 3]; 4) (–2; –1]. 14. 1) (−∞;−2] −1; | 
 | ; | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 6 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ); | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 2) | 
 | 
 | 
 | 
 | 
 | 2 | ; | 1 | 3) (–×; 0,75] | (4; 7); 4) (–3; 1). 15. 1) [1; 2]; 2) [4; 20]; | ||||||||||||||||||||||||||||||||
| (−2;−1] − | 3 | 3 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 7 | 
 | 
 | 
 | 
 | 
 | 146 | − 7 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 2 | |||||||||||
| 3) | 2; 2 | 
 | ; | 4) | 2; | 
 | 
 | 
 | 
 | 
 | 
 | . | 
 | 16. 1) [–2; | 0) (0; 1,6); 2) | − | 
 | ; 0 0; | 
 | 
 | ; | |||||||||||||||||||||
| 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 3 | |||||||
| 3) –1; [2; +×); 4) –2; 1; [3; +×). 17. 1) (–1; +×); 2) | (−∞; −11 [3; | 
 | + ∞); | |||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ) | 
 | ( | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | −1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 3) [–1; 3]; 2; 4) –3; [–2; 4]. 18. 1) −1− 2 13; −5 | 
 | 1; | + 2 13 ; 2) (–×; 0) | |||||||||||||||||||||||||||||||||||||||
| [1; 2]; 3) −5; − 4 + 2 | 5 − 2); 4) | (6 − 2 | 5 − 2; 7 . 19. 1) [2,5; 3); 2) [1; 1,5); | |||||||||||||||||||||||||||||||||||||||
| 3) | (5 | 2 | ; + ∞). | 20. 1) | −1; | 
 | − | 1 | 
 | 
 | 
 | 1 | ; 1 ; | 2) (0; 0,5); 3) (–0,75; 1); 4) [–1; 0). | ||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 5 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 21. 1) (0; 4) | 
 | 8 | + | 4a | 
 | + 8 a | 
 | + 1 | ; | 
 | + ∞ ; 2) при a < 2 x (0; | 
 | 
 | 
 | (1; | + ∞); при a = 2 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a − | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| х (1; +×); при a > 2 x (1; | 
 | a | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | . 22. –1,25 < а m 1 или а l 1,25. 23. а < –3 или | |||||||||||||||||||||||||||||||||||||
| a | − | 
 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
а > 1. 24. а < –1.
Раздел 4
§29. 4. 1) (1; +×); 2) (–×; 0); 3) (–2; +×); 4) (–×; 0). 10. 1) «–»; 2) «–»;
3)«+»; 4) «+».
| § 30. Пункт 30.1. 1. 1) | 3 | ; | 2) 2; 3) 0; 4) | 1 | ; 5) | 1 | ; | 6) 2 | ± | 6; | 7) –3; 2; 8) 0; | |
| 2 | 4 | 2 | ||||||||||
| 
 | 
 | 
9) 2; 10) 4; 11) корней нет; 12) 5; 13) корней нет; 14) 0; 15) 1; 16) 2; 17) 1; 18) 2; 3; 19) 1; 20) 1; 21) 2; 22) 2. 2. 1) 1; 2) 1; 3) 3. 3. 1) –4; 2;
2) –2; 3; 3) –2; 4; 4) –1; 3; 5) ± 3. 4. 1) 1; 2) 1; 3) 3; 4) –1; 5) 2; 6) 0; 7) –2; 8) 2. 5. 1) R; 2) при a = 0 R; при а ≠ 0 x = 1; 3) при a = 0 х R, х ≠ 0; при a > 0 x = 0,5
(при a < 0 уравнение не определено). Пункт 30.2. 1. 1) 0; 2) 1; 3) 1; 4) 1; 5) 1.
2. 1) 1; 2) 1; 3) 0; 2; 4) 0; 2; 5) 3; 6) 0,5; 7) ä1; 8) πn , п Z. 3. 1) 0; 2) 1; 3) 2;
2
4) 0; 5) 0; 6) 1,5. 4. 1) 0; 2) 0; 3) 0; 4) 0; 1; 5) 0; 1. 5. 1) 2; 2) ä1; 3) 0; 4) 0; 1,5. 8. 1) (3; –1); 2) (–2; –3); 3) (1; 2); (2; 1); 4) (3; 1); 5) (4; 2); 6) (4; 2).
438
 
Пункт 30.3. 1. 1) (0; +×); 2) (–1; +×); 3) R; 4) решений нет; 5) (–×; –2]; 6) (–×; 5]; 7) [2,5; +×); 8) (0; +×); 9) [1; 3) [6; +×); 10) [1; 4) [8; +×). 2. 1) (–×; 0); 2) (–×; 1); 3) [–1; +×); 4) (–×; 1]; 5) (2; +×); 6) [1; 2]. 3. 1) (–×; 0);
2)(–×; 1]; 3) (–×; –1] [0; +×); 4) [0; 1]. 4. 1) –2; [3; +×); 2) (–×; –2], 4;
3)(0; 1); 4) (0; 1).
| § 31. 2. 1) 2; 2) 3; 3) –2; 4) 0,5; 5) –1,5; 6) 0; 7) | 1 | ; 8) | 1 | ; 9) –1; 10) –1. | 
| 
 | 4 | |||
| 3 | 
 | |||
3. 1) log4 9; 6) ln 3. 4. 5) 14; 6) 54. 5. 2) 2 lg a + 5 lg b – 7 lg c – 1;
| 5) 2 + 7log3 a + | 1 | log3 b. | 6. 1) 3 lg | a | + 5 lg | b | + 8 lg | c |; 2) | 
 | 1 | lg | 
 | a | 
 | + | 1 | lg | 
 | b | 
 | − | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| −2lg | 
 | c | 
 | ; | 3) 4lg | 
 | c | 
 | − | 2 | lg | 
 | a | 
 | − | 2 | lg | 
 | b | 
 | ; 4) 2 + | 1 | 
 | lg | 
 | 
 | a | 
 | + | 1 | lg | 
 | 
 | b | 
 | + | 2 | 
 | 
 | lg | 
 | c | 
 | . 7. 1) b + 1; | ||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 2) 2a + b; 3) a + b + 1; 4) 3a + 2b. 8. 1) | 40 | ; 2) | 
 | 3 5a c5 | ; 3) | 
 | m3 7 n2 | ; 4) | 
 | 1 | . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | b2 | 
 | 
 | 1600 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 9 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 5 p | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 9. 1) –log | 
 | a; 2) 0,5 log | 
 | a; 3) –0,5 log | 
 | a; 4) 2 log | 
 | 
 | a; 5) | log3 a | . 10. 1) 24; 2) 10; | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 3 | 3 | 3 | 3 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | log3 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2(2a − 1) | 
 | 
 | 2 + a | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | b(3 | − 2a) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | b(a + 4) | ||||||||||||||||||||||||||||||||
| 3) 2,5; 4) 1,5; 5) 19; 6) 12. 11. 1) | 
 | 
 | 
 | 
 | 
 | ; 2) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ; 3) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ; 4) | 
 | . | |||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3(1+ ab) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | ( | − a | ) | 2 | ( | 2 | − a | ) | 
 | ab + 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
§32. 1. 1) (–3; +×); 2) (3; +×); 3) (–×; –1) (1; +×); 4) (0; 3); 5) R; 6) R;
7)(–×; –2) (3; +×); 8) (2; 3) (3; +×); 9) (–×; –3) (3; +×); 10) (0; 1)(1; 2); 11) (1,5; 2) (2; 5).
§33. Пункт 33.1. 1. 1) 16; 2) 5; 3) 2; 4) 100. 2. 1) 5; 2) 6; 3) –3; 1; 4) 2,9.
| 3. 1) 1; 2) 0; 3) 2; 4; 4) 5. 4. 1) 3; 27; 2) 10; 3) | 1 | ; | 9; 4) 0,1; 1; 10. 5. 1) 1; 2) 2; | ||||
| 
 | |||||||
| 81 | 
 | ||||||
| 
 | 
 | 1 | + 17 | 
 | 
 | 
 | |
| 4; 3) 0; 4) log 4. 8. 1) (100; 10); (10; 100); 2) | 
 | ; | 17 | ; 3) (4; 1); (1; 4); | |||
| 
 | 2 | ||||||
| 3 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | ||
4) (0,25; 64); (8; 2). Пункт 33.2. 1. 1) (9; +×); 2) (0; 5); 3) (0,5; +×); 4) (0; 100). 2. 1) (2; +×); 2) (0,2; 2); 3) (23 ; 9); 4) (–0,5; 1,5). 3. 1) (3; +×); 2) (− 13 ; 1); 3) (2; 3); 4) (0,5; 4]. 4. 1) (0; 3) (9; +×); 2) (0,1; 10) (10; 1000); 3) 19;9 ; 4) (–×; 0,5] [4; +×). 5. 1) (10; +×); 2) [6; +×); 3) (–4; –3)
| 
 | 
 | 
 | 
 | 
 | 
 | |
| (4; 5); 4) [1; +×). 6. 1) (0; 0,25]; 2) (1; 4); 3) (0;1) | 2; 4 ; 4) (–2; 0,5). | |||||
| § 34. 1. 1) 1; 1000; 2) | 1 | ; 10; 3) | 1 | ; 8; 4) 3; 5) а) 1; 4; б) 0; 1; 4; 6) –1; 0; 2; | ||
| 16 | ||||||
| 10 | ||||||
| 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | ||
7) 3; 8) 0,25; 4; 9) 2. 2. 1) (25; 5); (5; 25); 2) (0,5; 0,125); (8; 2). 3. 1) (0; 0,5)
(1; 2); 2) (–×; –2] [–1; 0] [3; +×); 3) [3; 5]; 4) при 0 < a < 1 х (0; a)
(a–4; +×); при a > 1 х (a–4; a); при a m 0 или a = 1 неравенство не определе%
439
 
но; 5) при 0 < a < 1 х (a; a–2); при a > 1 х (0; a–2) (a; +×); при a m 0 или a = 1 неравенство не определено.
§ 35. 1. 1) 1; 2) 1; 3) 2; 4) 0; 5) 4; 6) корней нет; 7) ä2; 8) 1. У к а з а н и е.
| Записать уравнение в виде log2 | (x + | 1 | )= 2x − x2 | и учесть, что при x > 0 x + | 1 | l2; | 
| 
 | 
 | x | 
 | x | ||
9) 1. 2. 1) ä2; 2) ä2; 3) 2. У к а з а н и е. Разделить обе части уравнения на 2x и учесть, что функция, полученная в правой части, убывающая. 3. 1) 0,25;
| 2; 2) 1; 3; 3) | 
 | 1 | ; 1,5. 4. 1) –3; [–1; +×); 2) [25; +×). 5. 1) При a l 11 | |||||||||||
| 2 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| x = log | a − 1 ± | a2 − 10a − 11 | ; | при | a | < | –1,5 x | = log | a − 1+ a2 − 10a − 11 | ; при | ||||
| 
 | ||||||||||||||
| 5 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 5 | 2 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| –1,5 m a < 11 | 
 | корней | нет; | 2) | при | −1 < a 3 − 2 2 или | 3 < a m3 + 2 2 | |||||||
| 
 | a2 − 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| x = log2 | 
 | ; при a m –1 или 3 | − 2 2 < a 3, | или a > 3 + 2 2 | корней нет. | |||||||||
| 2(a − 3) | ||||||||||||||
6. 1) (–5; –5); (2; 2); 2) (3; 3). 7. –1 < a m 0. 8. a l 1. 9. a = –4. У к а з а н и е. Привести уравнение к виду f (x) = 0 и учесть, что функция f (x) четная. 10. a m 0, a = 0,25. 11. При a < 0 корней нет; при a = 0 один корень; при a > 0 два корня. 12. При a m –1 или a l 7 один корень; при –1 < a < 7 два корня. 13. a l –2,25.
Дополнительные упражнения. 1. 1) –40; 2) 5 3; 3) 7; 4) 20. 2. 1) 1000; 2) –2; 3) 32; 4) 27; 5) 10. 3. 1) 1; 2) 4; 3) 1; 4) 2. 4. 1) 9; 2) 19; 3) 0,5. 5. 1) –27,2;
| 2) –0,8; 3) | − | 5 | ; 4) 2,903. 6. 1) | 24a | ; 2) | a + 1 | ; 3) 5 (1 – a – b). 9. 1) (–×; –1] | ||||
| 
 | 
 | 
 | |||||||||
| 
 | 6 | 
 | 2 + 3a | 2a | 
 | 
 | 
 | ||||
| [3; +×]; 2) (–×; –1] [5; +×]; 3) | 
 | − 1; 0) (2; 1 | ; | 4) [–1; 0) (3; 4]. | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 3 | 
 | 
 | ||
10.1) (–×; 1]; 3) [0,5; 1]; 4) [2; 4]. 11. 1) [–2; +×); 2) (–×; –8]; 3) [–1; +×); 4) (–×; 1]. 12. 1) –2,5; 2) 0,6; 3) 1,75; 4) 3. 13. 1) –2; 2) 6; 11; 3) 16; 4) 64.
11.1) [–2; +×). 14. –2 < а < 2. У к а з а н и е. Записать заданные выражения как степени с одинаковым основанием 5.
440
Предметный указатель
| А | Д | 
| Арифметический корень 262, 264 | Деление многочлена на двучлен 119 | 
| Арккосинус 149 | Деление многочленов 117 | 
| Арккотангенс 154 | — — «уголком» 118 | 
| Арксинус 146 | — — с остатком 118 | 
| Арктангенс 151 | Дробная часть числа 50 | 
| В | 3 | |
| Внесение множителя под знак корня | Замена переменных 169, 277, 281 | |
| 263, 270 | 
 | |
| Вынесение множителя из%под знака кор% | К | |
| ня 263, 270 | ||
| 
 | ||
| Г | Корень из корня 263, 267 | |
| — — произведения 263, 267 | ||
| Гармонические колебания 59 | — — степени 263 | |
| — —, амплитуда 60 | — — частного 263 | |
| — —, начальная фаза 60 | — квадратный 262 | |
| — —, период 60 | — многочлена 120 | |
| — —, частота 60 | — — кратный 122 | |
| Геометрический смысл модуля 241, 240 | — — рациональный 125 | |
| Гипербола 22 | — n%й степени 262, 264 | |
| График квадратичной функции 20 | — уравнения 183 | |
| — косинуса 60, 63 | — — посторонний 187, 191 | |
| — котангенса 67, 69 | Косинус 43, 46 | |
| — неравенства с двумя переменны% | Косинусоида 60, 63 | |
| ми 101, 103 | Котангенс 43, 46 | |
| — линейной функции 18 | Котангенсоида 67, 69 | |
| — логарифмической — 366 | 
 | |
| — периодической — 53 | Л | |
| — показательной — 328, 332 | ||
| 
 | ||
| — синуса 56, 59 | Логарифм 357, 358, 373 | |
| — тангенса 64, 67 | — десятичный 357, 359 | |
| — уравнения с двумя переменными | — натуральный 357, 359 | |
| 101, 103 | 
 | |
| — функции 6, 9 | М | |
| — —, геометрические преобразова% | ||
| 
 | ||
| ния 28 | Метод интервалов 232, 308, 352, 387 | |
| Графическое решение систем нера% | — — для тригонометрических нера% | |
| венств с двумя переменными 43, 46 | венств 250 | 
441
