Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Справочник витаминов.doc
Скачиваний:
215
Добавлен:
18.03.2015
Размер:
3.66 Mб
Скачать

Гипервитаминоз витамина b5

У млекопитающих состояния гипервитаминоза РР вызвать не удалось. Данные о способности ниацина накапливаться в тканях отсутствуют. Избыток никотиновой кислоты быстро выводится с мочой.

Оценка обеспеченности организма витамином pp

Обеспеченность организма ниацином достаточно хорошо характеризуется величиной экскреции основных продуктов его катаболизма — N-метилникотинамида и метил-2-пиридон-5-карбоксиамида. В нормальных физиологических условиях концентрация выводимых с мочой метаболитов никотиновой кислоты и никотинамида невелика, но резко возрастает при их избыточном поступлении в организм. Определение количественного содержания N-метилникотинамида и его пиридонов в моче после применения нагрузочных доз витамина РР до настоящего времени служит единственным критерием обеспеченности организма этим витамином. Таким критерием не могут быть уровни самого витамина РР или его коферментных форм в крови, так как даже при тяжелой пеллагре их содержание мало отличается от нормы.

Суточная потребность и пищевые источники витамина b5

Суточная потребность в витамине составляет 20—25 мг.

Источником витамина являются животные (особенно печень, мясо) и многие растительные продукты, в первую очередь, рис, хлеб, картофель. Молоко и яйцо содержат следы ниацина. Правда, витамин РР способен синтезироваться клетками организма из триптофана, но этот процесс малоэффективен — из десятков молекул триптофана образуется только одна молекула витамина. Тем не менее продукты, богатые этой аминокислотой (молоко и яйцо), могут компенсировать недостаточное поступление никотинамида с пищей.

Продукты,богатые витамином pp (b5)

ХИМИЧЕСКОЕ СТРОЕНИЕ И СВОЙСТВА ПИРИДОКСИНА (ВИТАМИНА B6)

Химическое строение и свойства. Витамин В6 включает группу трех природных производных пиридина, обладающих одинаковой витаминной активностью: пиридоксина, пиридоксаля, пиридоксамина, отличающихся друг от друга наличием соответственно спиртовой, альдегидной или аминогруппы.

А. Сент-Дьёрдьи

Витамин В6 открыт в 1934 г. А. Сент-Дьёрдьи и вскоре был синтезирован химически.

МЕТАБОЛИЗМ ПИРИДОКСИНА (ВИТАМИНА B6)

Всосавшись в тонком кишечнике, все формы витамина с током крови разносятся к тканям и, проникая в клетки, фосфорилируются с участием АТФ и пиридоксалькиназ. Коферментные функции выполняют два фосфорилированных производных пиридоксина: пиридоксальфосфат и пиридоксаминфосфат.

Распад коферментов осуществляется путем дефосфорилирования и окисления в тканях. Основным пролуктом катаболизма является 4-пиридоксиловая кислота, которая экскретируется с мочой.

БИОХИМИЧЕСКИЕ ФУНКЦИИ ВИТАМИНА B6

Витамин В6 часто называют «королем обмена аминокислот»; вместе с тем его коферментные формы участвуют в реакциях, катализируемых почти всеми классами ферментов. Механизм действия всех пиридоксальфосфатзависимых ферментов сходен:

  • Вначале образуются шиффовы основания между аминокислотой и коферментом, при этом нитрофильный азот пиридонового кольца действует как своеобразный электронный сток, уводя электроны от аминокислоты и стабилизируя промежуточный интермедиат — карбаиион;

  • будучи неустойчивыми, шиффовы основания (альдимины) далее модифицируются в процессах трансаминирования, декарбоксилирования, изомеризации и во многих других превращениях боковой цепи аминокислот.

Коферментные формы витамина В6 входят в состав следующих ферментов:

  • аминотраисфераз аминокислот, катализирующих обратимый перенос NHj-группы от аминокислоты на а-кетокислоту, при этом образуются новые а-кетокислоты и заменимые аминокислоты;

  • декарбоксилаз аминокислот, отщепляющих карбоксильную группу аминокислот, что приводит к образованию биогенных аминов (гистамина, серотонина, ГАМК и других), а также моно-аминоксидаз, гистаминазы (диаминооксидаза) и аминотрансферазы ГАМК, обезвреживающих (окисляющих) биогенные амины;

  • изомераз аминокислот, с помощью которых организм разрушает D-аминокислоты (в состав тканевых белков млекопитающих входят L-аминокислоты);

  • синтазы дельта-аминолевуленовой кислоты, участвующей в биосинтезе гема гемоглобина и других гемсодержащих белков;

  • аминотраисфераз иодтирозипов и иодтиронинов, участвующих в синтезе гормонощитовидной железы и распаде этих гормонов в периферических тканях;

  • кинурениназы и кинуренинаминотрансферазы, обеспечивающих синтез витамина РР из триптофана;

  • цистатионинсинтазы (а) и цистатионинлиазы (б) — ферментов, катализирующих синтез и распад цистатионина в следующих реакциях:

  • синтетазы 3-кетодигидросфингозида, участвующей в реакциях биосинтеза сфинголипидов (из серина и пальмитил-КоА).

Таким образом, витамин В6 характеризуется исключительно широким спектром биологического действия. Он принимает участие в регуляции белкового, углеводного и липидного обмена, биосинтезе гема и биогенных аминов, гормонов щитовидной железы и других биологически активных соединений. Помимо каталитического действия, пиридоксальфосфат участвует в процессе активного транспорта некоторых аминокислот через клеточные мембраны, ему присуша функция регулятора конформационного состояния гликогенфосфорилазы — главного регулируемого фермента, осуществляющего распад гликогена.