- •Вариант 1.
- •4. В урне содержатся 5 черных и 6 белых шаров. Случайным образом вынимают 5 шаров.
- •6. Всхожесть семян некоторого растения составляет 90%. Найти вероятность того, что из 800
- •Вариант 2.
- •13. Монету подбрасывают 5 раз. Построить закон распределения количества выпадений герба.
- •15. На телефонной станции неправильное соединение происходит с вероятностью 0,003.
- •Вариант 3
- •4. В урне содержится 6 черных и 5 белых шаров. Случайным образом вынимают 5 шаров.
- •8. Прибор может работать в трех режимах: нормальном, форсированном и недогруженном.
- •Вариант 4.
- •10. Дан закон распределения случайной величины X :
- •Вариант 5.
- •4. В урне содержится 4 черных и 5 белых шаров. Случайным образом вынимают 4 шара.
- •8. Кинескопы для телевизоров поставляют три завода: первый – 50%, второй – 30%, третий –
- •Вариант 6.
- •4. В урне содержится 8 черных и 6 белых шаров. Случайным образом вынимают 5 шаров.
- •6. Вероятность того, что изделие бракованное, равна 0,05. Найти вероятность того, что среди
- •Вариант 7.
- •20. Случайная величина распределена по нормальному закону с параметрами
- •Вариант 8.
- •1. В группе из 25 студентов, среди которых 10 девушек, приобретено 7 билетов на дискотеку.
- •4. В урне содержится 4 черных и 7 белых шаров. Случайным образом вынимают 4 шара.
- •6. Вероятность того, что данное изделие будет забраковано, равна 0,2. Найти вероятность того,
- •20. Случайная величина распределена по нормальному закону с параметрами
- •Вариант 9.
- •4. В урне содержится 5 черных и 6 белых шаров. Случайным образом вынимают 5 шаров.
- •6. Прибор состоит из 200 деталей, каждая из которых может выйти из строя с вероятностью
- •10. Дан закон распределения случайной величины X :
- •Вариант 10.
- •Вариант 11
- •1. В ящике 12 деталей, среди которых 7 окрашенных. Сборщик наудачу извлекает 4 детали.
- •2. Бросают три игральные кости. Найти вероятность того, что сумма выпавших очков больше
- •4. В урне содержится 8 черных и 6 белых шаров. Случайным образом вынимают 4 шара.
- •Вариант 12.
- •4. В урне содержится 6 черных и 7 белых шаров. Случайным образом вынимают 4 шара.
- •Вариант 13.
- •2. Бросают четыре монеты. Найти вероятность того, что только на одной монете появится
- •4. В урне содержится 4 чёрных и 6 белых шаров. Случайным образом вынимают 4 шара.
- •6. Всхожесть семян некоторого растения составляет 70%. Какова вероятность того, что из 10
- •9. На отрезок единичной длины бросают две точки. Они разбивают отрезок на три части.
- •Вариант 14.
- •4. В урне содержится 5 чёрных и 6 белых шаров. Случайным образом вынимают 5 шаров.
- •16. Случайная величина задана функцией плотности распределения:
- •20. Случайная величина распределена по нормальному закону с параметрами
- •22. По выборке а решить следующие задачи:
- •22. По выборке а решить следующие задачи:
- •Вариант 16.
- •20. Случайная величина распределена по нормальному закону с параметрами
- •22. По выборке а решить следующие задачи:
- •Вариант 17.
- •18. Случайная величина распределена равномерно на отрезке [1,1; 1,3]. Записать функции
- •20. Случайная величина распределена по нормальному закону с параметрами
- •22. По выборке а решить следующие задачи:
- •Вариант 18.
- •20. Случайная величина распределена по нормальному закону с параметрами
- •Вариант 19.
- •1. На участке работают 16 женщин и 5 мужчин. По табельным номерам отобраны наудачу 3
- •2. Бросают четыре монеты. Найти вероятность того, что только на двух монетах появится
- •4. В урне содержится 6 чёрных и 7 белых шаров. Случайным образом вынимают 5 шаров.
- •20. Случайная величина распределена по нормальному закону с параметрами
- •Вариант 20.
- •1. В лабораторию на исследование поступило 7 банок кофе, среди которых три подделки.
- •4. В урне содержится 6 чёрных и 8 белых шаров. Случайным образом вынимают 5 шаров.
- •6. Вероятность неточной сборки прибора равна 0,2. Найти вероятность того, что среди 500
- •22. По выборке а решить следующие задачи:
- •Вариант 21.
- •4. В урне содержится 6 чёрных и 5 белых шаров. Случайным образом вынимают 5 шаров.
- •20. Случайная величина распределена по нормальному закону с параметрами
- •22. По выборке а решить следующие задачи:
- •Вариант 22.
- •2. Бросают три монеты. Найти вероятность того, что хотя бы на двух монетах появится
- •4. В урне содержится 8 чёрных и 6 белых шаров. Случайным образом вынимают 5 шаров.
- •8. На склад поступили телевизоры двух марок: «panasonic» – 70%; «lg» – 30%, причём
- •20. Случайная величина распределена по нормальному закону с параметрами
- •Вариант 23.
- •4. В урне содержится 6 чёрных и 5 белых шаров. Случайным образом вынимают 4 шара.
- •6. Вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна
- •20. Случайная величина распределена по нормальному закону с параметрами
- •Вариант 24.
- •20. Случайная величина распределена по нормальному закону с параметрами
- •22. По выборке а решить следующие задачи:
- •Вариант 25.
- •4. В урне содержится 5 чёрных и 7 белых шаров. Случайным образом вынимают 4 шара.
- •6. Вероятность неточной сборки прибора равна 0,02. Найти вероятность того, что среди 500
- •8. Вероятность поражения мишени при одном выстреле равна 0,9. Найти вероятность того,
- •20. Случайная величина распределена по нормальному закону с параметрами
- •22. По выборке а решить следующие задачи:
20. Случайная величина распределена по нормальному закону с параметрами
Найти вероятность того, что эта случайная величина примет значение
a = 12
и σ = 6 .
а) из промежутка [5; 20];
б) меньшее 15;
в) большее 10;
г) отличающееся от своего среднего значения по абсолютной величине не более чем на 7.
21. Изготовленные цехом детали по размерам диаметра распределяются по нормальному закону со средним значением 4,9см и средним квадратическим отклонением 0,5см. Найти вероятность того, что диаметр наудачу взятой детали отклонится от математического ожидания менее чем на 1см.
22. По выборке А решить следующие задачи:
а) составить вариационный ряд,
б) вычислить относительные и накопленные частоты,
в) построить эмпирическую функцию распределения и ее график,
г) вычислить числовые характеристики вариационного ряда: выборочную среднюю, дисперсию, среднее квадратическое отклонение, моду, медиану.
д) при уровне значимости
α = 0, 05
проверить гипотезу о распределении
Пуассона соответствующей генеральной совокупности.
Выборка А:
2 1 2 3 1 1
0 2 2 4 3 3
0 3 0 2 3 0
2 3 0 2 3 3
4 4 1 4 0 0
0 0 0 2 2 3
2 1 0 0 0 3
1 3 1 0 1 3
2 0 0 1 1 3
0 0 3 1 3 4
23. По выборке В решить следующие задачи:
а) составить вариационный ряд, построить полигон и гистограмму;
б) вычислить относительные и накопленные частоты,
в) построить эмпирическую функцию распределения и ее график,
г) вычислить числовые характеристики вариационного ряда: выборочную среднюю, дисперсию, среднее квадратическое отклонение, моду, медиану.
д) при уровне значимости
α = 0, 05
проверить гипотезу о нормальном
распределении соответствующей генеральной совокупности.
Выборка В:
|
56 |
76 |
65 |
66 |
76 |
66 |
89 |
48 |
|
62 |
50 |
47 |
55 |
67 |
51 |
73 |
75 |
|
61 |
88 |
46 |
57 |
65 |
60 |
69 |
68 |
|
65 |
34 |
77 |
63 |
57 |
61 |
42 |
85 |
|
49 |
62 |
65 |
75 |
56 |
66 |
92 |
60 |
|
43 |
52 |
80 |
68 |
42 |
87 |
81 |
67 |
|
65 |
81 |
90 |
38 |
58 |
60 |
79 |
58 |
|
77 |
73 |
54 |
58 |
77 |
86 |
52 |
61 |
|
42 |
61 |
70 |
53 |
64 |
65 |
76 |
88 |
|
59 |
62 |
67 |
62 |
90 |
80 |
72 |
58 |
Вариант 9.
1. Для оформления витрины магазина выделено 10 костюмов, 5 свитеров и 3 платья. Наудачу выбрали 5 вещей. Найти вероятность того, что на витрине окажутся 2 костюма, 1 свитер и 2 платья.
2. Бросают 4 монеты. Найти вероятность того, что только на трех монетах появится «герб».
3. Слово «ПРОЦЕССОР» разрезано по буквам на карточки. Затем карточки перемешивают и вынимают без возвращения по одной. Найти вероятность того, что карточки в порядке появления образуют слово а) ПРОЦЕССОР, б) ПРОСО.
4. В урне содержится 5 черных и 6 белых шаров. Случайным образом вынимают 5 шаров.
Найти вероятность того, что среди них:
а) 3 белых шара;
б) менее трех белых шаров;
в) хотя бы 1 белый шар.
5. Вероятность появления события А в одном испытании равна 0,15. Вычислить вероятности следующих событий:
а) событие А наступит 2 раза в серии из 4 независимых испытаний;
б) событие А наступит не менее 45 и не более 70 раз в серии из 100 независимых испытаний.
