Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
спец титан.doc
Скачиваний:
414
Добавлен:
17.03.2015
Размер:
9.08 Mб
Скачать

Классификация методов упрочнения

Таблица 1.3.5.1

Класс и метод

Процесс

1. Упрочнение созданием пленки на поверхности

    1. ХТО

1.2 Упрочнение изменением структуры поверхностного слоя

Физико-термическая обработка

Электрофизическая обработка

1.3 Механическая обработка

1.4 Упрочнение физическими методами

1.5 Упрочнение изменением шероховатости поверхности

Электрохимическое полирование

Обработка резанием

Пластическое деформирование

Электроплазменное полирование

Методы упрочнения поверхностей

Оксидирование, сульфидирование, фосфатирование

Лазерная закалка, плазменная закалка

Электроимпульсная обработка, электроконтактная обработка, электроэрозийная обработка, ультразвуковая обработка

Упрочнение вибрацией, фрикционно-упрочняющая обработка, дробеструйная обработка, обработка взрывом, термомеханическая обработка, поперечно-клиновая прокатка, прокатывание, волочение, редуцирование

Ионная, лазерная, плазменная обработки

Окунанием в ванну в струе электролита

Шлифование, суперфиниширование, хонингование

Накатка, раскатка, обработка дробью

2. Методы упрочнения поверхностей путем нанесения покрытий

2.1 Напыление износостойких соединений

2.2 Электролитическое осаждение

    1. Осаждение твердых осадков и паров

2.4 Наплавка легированным металлом

Плазменное напыление порошковых

материалов, детонационное напыление, электродуговое напыление, лазерное напыление

Хромирование, никелирование, электрофорез, никельфосфатирование, борирование, борохромирование, хромофосфотирование

Электроискровое легирование, термическое испарение тугоплавких соединений, катодно-ионная бомбардировка, прямое электронно-лучевое испарение, электрохимическое испарение

Газовым пламенем, электрической дугой, плазмой, лазерным лучом, пучком ионов

Упрочнение физическими и физико-химическими методами

Для повышения износостойкости и твердости поверхности деталей машин, работающих в условиях повышенных температур в инертных газах, жаростойкости и коррозионной стойкости поверхности применяют упрочнение методами электроискровой обработки. Этот метод заключается в легировании поверхностного слоя металла изделия (катода) материалом электрода (анода) при искровом разряде в воздушной среде. В результате химических реакций легирующего металла с азотом, углеродом и металлом детали в поверхностных слоях образуются закалочные структуры и сложные химические соединения, возникает диффузионный износостойкий упрочненный слой, имеющий высокую твердость. Для нанесения многослойных покрытий используют методы ионно-плазменной обработки.

Упрочнение методами пластического деформирования

Упрочнение выполняется с целью повышения сопротивления усталости и твердости поверхностного слоя металла и формирования в нем направленных внутренних напряжений, преимущественно напряжений сжатия, а также регламентированного рельефа микронеровностей на поверхности.

Упрочняющую обработку поверхностным пластическим деформированием эффективно применяют на финишных операциях технологического процесса изготовления деталей машин взамен операций окончательной обработки резанием лезвийными или абразивными инструментами.

Поверхностное пластическое деформирование, выполняемое без использования внешнего тепла и обеспечивающее создание указанного комплекса свойств поверхностного слоя, называют наклепом.

Слой металла, в котором проявляются эти свойства, соответственно называют наклепанным.

В результате наклепа повышаются все характеристики сопротивления металла деформации, понижается его пластичность и увеличивается твердость.

Интенсивность наклепа тем выше, чем мягче сталь; на незакаленных сталях в результате поверхностного деформирования можно получать увеличение твердости более 1000 %, а у закаленных только на 10-15%. Прирост твердости определяется структурой деформируемой стали.

Наклеп поверхности выполняют бомбардированием ее струей стальной или чугунной дроби, шариков либо суспензии, содержащей абразивные частицы; обкатывание роликами, шарами или ратационным инструментом, чеканкой.

Дробеструйный наклеп обеспечивает неглубокую пластическую деформацию до 0,5-0,7 мм. Применяют для поверхностей небольших деталей сложных форм, а также деталей малой жесткости типа пружин, рессор и др.

Применяют преимущественно стальную дробь диаметром 0,8-2 мм. Глубина наклепа при дробеструйной обработке не превышает 0,8 мм.

Поверхность детали приобретает некоторую шероховатость и последующей обработке не подвергается.

Режим обработки определяется скоростью подачи дроби, расходом дроби в единицу времени и экспозицией – временем, в течении которого обрабатываемая поверхность находится под ударами дроби. Поверхность детали должна быть полностью покрыта следами-вмятинами.

Поверхностная твердость обрабатываемого материала и глубина пластической деформации зависят от режимов упрочнения, физико-механических свойств, структуры и химического состава материала. Наибольшее влияние на поверхностную твердость оказывает удельное давление деформирующего элемента в контакте с обрабатываемой деталью и кратность приложения этого давления. Превышение предельно допустимого давления или числа циклов нагружения сопровождается остановкой роста твердости и ее снижения в связи перенаклепом, т. е. разрушением поверхностного слоя металла, возникающим в результате наступившего предела пластического деформирования его кристаллической решетки.

Для упрочнения изделий с твердостью до HRC65 применяют метод алмазного выглаживания. Он может заменить операции окончательного шлифования, полирования поверхностей. Метод широко универсален. Рационален для обработки стальных закаленных и термически не упрочненных деталей, с поверхностными покрытиями и без них, па так же деталей из цветных металлов и сплавов.

Наклеп поверхностного слоя струей суспензии (жидкость + абразивные частицы) применяют для случаев, когда требуется наибольшая глубина упрочненного слоя.

Упрочнением энергией взрыва можно повысить износостойкость при истирании, твердость поверхностного слоя, пределы прочности и текучести, статическую прочность (сварных соединений в результате сквозного наклепа сварного шва и зоны термического влияния), циклическую прочность, улучшить качество поверхностного слоя металла.

Упрочнение при импульсных нагрузках взрывом существенно отличается от упрочнения в обычных условиях.

При ударе с большей скоростью, свойственному взрыву, эффект упрочнения возрастает по мере увеличения скорости удара. В металле могут возникнуть высокие локальные температуры, вызывающие фазовые превращения в локальных участках. Одновременно действуют процессы, присущие упрочнению при обычных скоростях деформирования, такие, как двойникование, сдвиги, фрагментация.

Поверхности лопаток подвергаются упрочнению после окончательной механической и термической обработок.

Упрочнение детали микрошариками позволяет:

а) создать тонкий наклеп на деталях, имеющих острые кромки или малые радиусы впадин галтелей, канавок;

б) ликвидировать в поверхностном слое возможные после механической обработки остаточные растягивающие напряжения и создать сжимающие остаточные напряжения;

в) повысить твердость поверхности;

г) повысить и стабилизировать предел выносливости;

д) повысить чистоту поверхности на один - два класса до 0,63 …0,32

В ряду упрочняющих технологий особое место занимает ультразвуковое упрочнение. Упрочнение металла ультразвуковой обработкой обладает рядом особенностей – экспрессностью, высокой эффективностью, возможностью обработки изделий, не поддающихся упрочнению другими способами. Кроме того, совмещение ультразвуковой с какой – либо другой упрочняющей обработкой зачастую может усилить эффективность последней. К достоинствам ультразвукового упрочнения следует также отнести возможность создания для определенного класса деталей поверхностного и объемного наклепа, а так же их комбинаций. При этом достигается выгодное распределение внутренних напряжений в металле и такое структурное состояние, при котором удается увеличить в 2-3 раза запасы прочности деталей, работающих при переменных нагрузках, увеличить срок их службы в десятки раз.

Ультразвуковую упрочняющую обработку можно осуществить либо в жидкости, в которой распространяются ультразвуковые колебания, либо с помощью деформирующих тел, колеблющихся с ультразвуковой частотой.

Ультразвуковой волновой процесс в жидкости сопровождается возникновением большего числа разрывов, в виде мельчайших пузырьков в полупериод растяжения, и захлопыванием их в полупериод сжатия – кавитацией. В момент захлопывания пузырьков развиваются местные мгновенные давления, достигающие сотен атмосфер. Кавитационные пузырьки зарождаются преимущественно на поверхности помещенных в жидкость изделий. При захлопывании пузырьков происходит наклеп поверхности детали. Глубина наклепа, твердость, а следовательно и износостойкость наклепанного слоя.

Ультразвуковое упрочнение деталей с помощью деформирующих тел может осуществляться по двум технологическим схемам:

а) воздействием на обрабатываемую поверхность непосредственно инструментом;

б) воздействием на обрабатываемую поверхность рабочей средой (стальными шариками).