Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_Mineralo_769_gia_docx_bez_56-58.docx
Скачиваний:
411
Добавлен:
17.03.2015
Размер:
7.4 Mб
Скачать

61.Галогенные соединения.

С химической точки зрения относящиеся сюда минералы представлены солями кислот: HF, HCl, HBr и HJ; соответственно этому среди этих минералов различают фториды, хлориды, бромиды и иодиды. Галогеносоли являются комплексными соединениями, из которых здесь рассматриваются фторалюминаты. Кроме того, существуют водные соли и более сложные соединения, содержащие добавочные кислородсодержащие анионы: [ОН]1–, О2–, изредка [SO4]2– и [JO3]1–. Это так называемые оксигалоидные соединения, переходные к типичным кислородным соединениям. Галоидные соединения тяжелыхметаллов, наоборот, играют совершенно ничтожную роль в минералогии природных образований и возникают в особых условиях.

Кристаллохимические особенности галоидных соединений.

Установлено, что галогениды легких металлов характеризуются структурами с типичной гетерополярной (ионной) связью, тогда как в соединениях тяжелых металлов, катионы которых обладают сильной поляризацией, возникают гомополярные (ковалентные) или переходные к ним связи между ионами. В соответствии с этим находятся и физические свойства минералов.Так как в галогенидах с типичной ионной связью принимают участиекатионы легких металлов с малыми зарядами и большими ионными радиусами, а в связи с этим с весьма слабой способностью к активной поляризации, то естественно, что эти минералы обладают прозрачностью, бесцветностью (наблюдаемые окраски, как правило, являются аллохроматическими),малыми удельными весами, а также такими свойствами, как необычайнолегкая растворимость многих галогенидов в воде, низкие показатели преломления, а следовательно, и слабый стеклянный блеск минералов.

Об особенностях поведения галогенов в природе. Крайне интересны геохимические черты галогенов F, Cl, Br и J, выражающиеся в поведении их при различных геологических процессах.При магматических процессах не создается условий для концентрации этих элементов в скольконибудь значительных количествах. Фтор и хлорлишь в качестве добавочных анионов входят в ряд минералов, преимущественно силикатов и фосфатов (большей частью в пегматитах и в контактово-метасоматических образованиях). Главная масса этих элементов, очевидно в виде летучих соединений с металлами, переходит в гидротермальные растворы. О том, что хлор и фтор действительно являются составной частью летучих погонов магм, свидетельствуют выделения НСl и HF в газообразных продуктах вулканических извержений, иногда в весьма значительных количествах. Например, на Аляске в долине, известной под названием «Десять тысяч дымов», в 1919 г., по подсчетам, выделилось 1,25 млн т газообразной НСl и 0,2 млн т HF вместе с парами Н2О.

О классификации галогенидов. Таким образом, все, что сказано о свойствах галогенидов и о геохимической роли галогенов при процессах минералообразования, заставляет все минералы, относящиеся к данному разделу, разбить на два класса.

· Класс 1. Фториды и соли комплексных фторных кислот. Класс 2. Хлориды, бромиды и иодиды.

62. Карбонаты.

В этом классе мы встречаем уже весьма значительное число минеральных видов, многие из которых пользуются сравнительно широким распространением в природе. Особенно это относится к Са[СО3], который нередко слагает огромные толщи осадочноморского происхождения. Часто карбонаты являются также спутниками рудныхминералов в месторождениях, а в ряде случаев сами представляют промышленный интерес как источники ряда важных металлов, например,марганца (в виде родохрозита) и железа (в виде сидерита).Анион [СО3]2– способен давать более или менее устойчивые соединения с катионами двухвалентных металлов, обладающими средними ибольшими ионными радиусами. Число таких металлов невелико. Главнейшие из них Mg, Fe, Zn Mn, Ca, Sr, Pb, Ba, а также Cu, Zn, Mn и др.с дополнительными анионами.Твердость безводных карбонатов никогда не бывает высокой. Обычно онаколеблется от 3 до 5. Растворимость карбонатов в воде повышенная. Особенно это свойственно карбонатам щелочей и бикарбонатам тех элементов, катионы которых обладают либо относительно малыми ионными радиусами (например, Mg2+, Co2+), либо, наоборот, очень большимиразмерами (например, Ва2+). Карбонат Cu2+ встречается только в виде основных солей, что связано, очевидно, с особенностями строения самого катиона. Этим же, вероятно, объясняются и интенсивные окраски карбонатов меди в зеленый и синий цвета. Все остальные карбонаты либо бесцветны, либо окрашены в бледные тона. Из оптических свойств для карбонатов очень характерным является весьма высокое двупреломление(Ng–Np), обусловленное плоской формой аниона СО3.Среди минералов этого класса мы прежде всего должны различать безводные и водные карбонаты. Среди тех и других выделим соответствующие группы по типам изоструктурных химических соединений. Остальные карбонаты, представленные единичными минеральными видами,сгруппируем по катионам.

Безводные карбонаты

Эта группа включает большое число минеральных видов, представляющих карбонаты следующих двухвалентных металлов (в порядке возрастания ионных радиусов): Mg, Zn, Fe2+, Mn2+, Ca, Sr, Pb и Ba. Характерно, что ионы с меньшим (радиусом, чем Са, образуют широкие изоморфные ряды минералов, кристаллизующихся в тригональной сингонии, а ионы с большим радиусом, чем у Са, образуют карбонаты ромбической сингонии. Карбонат самого кальция является диморфным, т. е. может кристаллизоваться в той и другой сингониях.

Рис. 208. Расположение ионов в ячейке спайного ромбоэдра {1011}. Оба сорта ионов располагаются как в гранецентрированных решетках

Кристаллическая структура тригональной модификации СаСO3 изображена на рис. 208 и 209.

Рис. 209. Модель кристаллической структуры кальцита

Если кубическую решетку NaCl сдавить вдоль тройной оси настолько, что углы между гранями станут равными 101°55', то получится ромбоэдрическая гранецентрированная решетка кальцита (рис. 209), причем ионы Са займут места Na, а группы [СO3]-места Сl. Таким образом, упаковка ионов в кальците отвечает несколько искаженной упаковке, произведенной по способу плотнейшей кубической кладки структурных единиц.

Рис. 210. Модель кристаллической структуры арагонита

Кристаллическая структура арагонита-ромбической модификации СаСO3 от структуры кальцита отличается лишь тем, что ионы Са2+ и [СO3]2- упакованы по способу плотнейшейгексагональной кладки (рис. 210). Этим обстоятельством обусловливается наблюдающаяся псевдогексагональная симметрия тройников кристаллов (углы между гранями призмы в единичных кристаллах лишь немного отличаются от 60 и 120°). Как в решетке кальцита, так и в решетке арагонита каждый ион [СO3]2- окружен шестью ионами кальция. Насколько можно судить по разнице удельных весов, кристаллическая структура арагонита более плотна, чем структура кальцита.

Другой характерной особенностью минералов группы кальцита является склонность к образованию изоморфных смесей и двойных солей. В кальцитовом ряде, как и следовало ожидать согласно соотношениям размеров ионных радиусов катионов, широко замещают друг друга Mg, Zn и Fe2+.

Точно так же, карбонаты Fe2+ и Мn2+ образуют непрерывный ряд изоморфных смесей. Что касается Са, то этот элемент в силу существенного отличия величины его ионного радиуса от предыдущих катионов (за исключением Мn2+) может образовывать лишь двойные соли с ними. Ионы кальция и магния (или другие малые катионы) в кристаллических решетках располагаются попеременно вдоль тройной оси. Благодаря этому симметрия двойных солей кальцитового ряда несколько снижается: вместо дитригонально-скаленоэдрического вида симметрии (L63L23РС) имеем ромбоэдрический (L63C), т. е. исчезают двойные оси, проходящие через центральный ион углерода и кислородные ионы, с ним связанные.

Среди карбонатов, содержащих в своем составе молекулы Н2O, более распространены водные карбонаты Na, Mg, U и др. Здесь мы рассмотрим лишь десятиводный карбонат натрия.