Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДР новій.doc
Скачиваний:
30
Добавлен:
13.03.2015
Размер:
3.23 Mб
Скачать

Др 1-го порядку. Основні поняття

Означення. ДР 1-го порядку називається рівняння виду , де- незалежна змінна,- невідома функція.

Якщо ДР можна записати у вигляді , то воно називається ДР-1,розв’язним відносно похідної.

Розв’язком ДР-1 називається деяка функція , яка при підстановці в дане рівняння перетворює його в тотожність.Загальним розв’язком ДР-1 називається такафункція, що є розв’язком для всіх можливих значеньі для будь-якої початкової умовиіснує єдине значення, при якому розв’язокзадовольняє цю початкову умову. Розв’язок. Отриманий із загальногоприназиваєтьсячастинним розв’язком, а задачу знаходження частинного розв’язку ДР , який задовольняє початкову умову, називаютьзадачею Коші. З геометричної точки зору, розв’язати задачу Коші означає виділити серед всіх інтегральних кривих даного ДР ту інтегральну криву, яка проходить через точку .

Приклад. Перевірити, що функція є загальним розв’язком ДРта знайти частинний розв’язок, що задовольняє початковій умові. Дати геометричне тлумачення результату.

Якщо задача Коші має не один розв’язок або ж зовсім його не має, то кажуть, що в точці порушується єдність розв’язку задачі Коші.

Справедлива теорема

Теорема Пікара. Нехай функція в ДР-1визначена і неперервна в обмеженій областіі отже, вона є обмеженою, тобто. І функціямає обмежену частинну похідну по зміннійв області:. Тоді задача Коші має єдиний неперервно-диференційонвний розв’язок в інтервалі, де.

Ця теорема дає достатні умови існування єдиного розв’язку задачі коші для ДР-1, але вони не є необхідними: може існувати єдиний розв’язок задачі Коші для ДР-1, але в точці наведені умови не виконуються.

Зауваження. Умова обмеженості похідної може бути дещо послаблена та замінена умовою Ліпшіца.

Означення. Кажуть,що функція , визначена в області, задовольняє в цій областіумові Ліпшіца по змінній , якщо існує така стала(константа Ліпшіца), що для всіхівиконувалась нерівність.

Приклад. . Тутнедиференційовна по зміннійв точціб, але умова Ліпшіца в околі цієї точки виконується:

,

оскільки . Тут.

Теорема Коші. Якщо функція неперервна і задовольняє умові Ліпшіца по зміннійв області, то задача Коші для ДР-1 має єдиний розв’язок.

Означення. Функція називається особливим розв’язком ДР-1, якщо:

  1. вона є розв’язком цього рівняння;

  2. через кожну точку кривої проходить принаймні дві різних інтегральних кривих цього рівняння.

Виникають питання:

  1. чи кожне ДР має особливий розв’язок?

  2. Якщо має, то як його знайти?

Відповідь на перше питання негативна, оскільки ДР, що задовольняють умови теорем Пікара або Коші особливих розв’язків не мають.

Для відповіді на друге питання введемо поняття.

Означення Нехай задана одно параметрична сім’я кривих . Криваназивається обвідною цієї сім’ї, якщо:

  1. для довільної точки кривої існую крива з цієї сім’ї, яка до неї дотикається в цій точці;

  2. складається лише з таких точок.

З диф.геометрії відомо, що якщо сім’я кривих має обвідну, то її можна знайти, виключивши параметріз системи:

Приклад. Знайти обвідну сім’ї парабол .

Маємо

Особливі розв’язки ДР-1 треба шукати там, де порушується умова теореми Пікара або Коші (зокрема, умова Ліпшіца чи обмеженість похідної ).

Зауваження. Точки, в яких необмежена, можуть і не складати особливих розв’язків.

Приклад.

не є особливим розвєєязком, оскільки ця функція навіть не є розв’язком ДР.

Теорема. Якщо є загальний розв’язок рівнянняі сім’я кривихмає обвідну, то ця обвідна буде особливим розв’язком ДР-1.

Приклад. Знайти особливий розв’язок рівняння .

Загальний розв’язок рівняння має вигляд - сім’я прямих.

Побудувати декілька .

Складемо систему ,,

Тоді - парабола.

Можна перевірити, що ця функція є розв’язком.

Зауваження. Інколи при інтегруванні отримуємо сімейство інтегральних кривих, залежне від сталої , в параметричній формі. Таке сімейство інтегральних кривих називаєтьсязагальним розв’язком ДР-1 в параметричній формі. Якщо можна виключити параметр , то отримаємо загальний розв’язок в неявному або явному вигляді.