Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ по линейной алгебре.doc
Скачиваний:
36
Добавлен:
12.03.2015
Размер:
1.71 Mб
Скачать

Система n линейных уравнений с n переменными. Метод обратной матрицы и формулы Крамера

Пусть m=n. Тогда матрица системы является квадратной , а ее определитель называетсяопределителем системы.

Предположим, что квадратная матрица невырожденная, т.е.

В этом случае существует

Умножим слева обе части (3) на матрицу получим решение системы методом обратной матрицы:

Отсюда видно, что вектор решения системы уравнений получается, если вектор свободных членов умножить слева на матрицу, обратную к матрице системы. Поэтому в методе обратной матрицы главным является обращение матрицы.

Другим способом решения системы уравнений с квадратной матрицей является использование формул Крамера.

Теорема Крамера. Пусть -определитель матрицы системы А, а-определитель матрицы, получаемый из А заменойj-го столбца столбцом свободных членов. Тогда, если , то система имеет единственное решение, определяемое по формулам:

(5)

Формулы (5) называются формулами Крамера.

Недостаток формул Крамера и метода обратной матрицы- их большая трудоемкость, связанная с вычислением определителей и нахождением обратной матрицы. Эти методы представляют скорее теоретический интерес и на практике не могут быть использованы для решения реальных задач.

Пример. Решить по формулам Крамера и методом обратной матрицы следующую систему уравнений:

Для применения формул Крамера вычислим определитель системы :

2 -1 -1

3 4 -2 = 60

3 -2 4

Заменим в определителе системы первый столбец на столбец свободных членов, вычислим полученный определитель:

4 -1 -1

=11 4 -2 =180

11 -2 4

Заменим в определителе системы второй столбец на столбец свободных членов, вычислим полученный определитель:

2 4 -1

3 11 -2

3 11 4 =60

Заменим в определителе системы третий столбец на столбец свободных членов, вычислим полученный определитель:

2 -1 4

3 4 11

3 -2 11 =60.

Вычислим значения неизвестных:

Для применения метода обратной матрицы представим систему уравнений в матричной форме:

2-1 -14

3 4 -2 = 11

3 -2 4 11

Далее рассчитываем обратную матрицу:

12 6 6

-18 11 1

-18 1 11

По формуле (4) получаем решение:

12 6 6 4 3

-18 11 1 11 = 1

-18 1 11 11 1

Метод Гаусса

Метод Гаусса- метод последовательного исключения неизвестных- заключается в том, что с помощью элементарных преобразований система уравнений приводиться к равносильной системе ступенчатого или треугольного вида, из которой последовательно, начиная с последних переменных, находятся все остальные переменные.

Предположим, что в системе (1) ( этого всегда можно добиться перестановкой уравнений)

Шаг 1. Умножим 1-ое уравнение на и прибавим ко второму; затем умножим 1-ое уравнение наи прибавим к третьему, и т.д., и , наконец, умножим 1-ое уравнение наи прибавим кm-му уравнению. Получим преобразованную систему уравнений, в которой исключено из всех уравнений, кроме первого:

……………………….. ( 6)

Здесь коэффициенты с верхним индексом (1) получены после 1-ого шага.

Шаг 2. Предположим, что .(этого всегда можно добиться перестановкой уравнений с перенумерацией).

Умножаем 2-ое уравнение на числа -,, …,и прибавим полученные уравнения соответственно к третьему, четвертому,

…,m-му уравнению системы (6), исключая из всех уравнений, начиная с третьего.

Продолжая процесс последовательного исключения переменных, после (r-1)- го шага получим систему:

………………………………….

(7)

…………

Если хотя бы одно из чисел не равно нулю, то соответствущее равенство противоречиво, и система (1) несовместна. Для любой совместной системы (m-r) уравнений в системе (7) являются тождествами, и их можно не принимать во внимание при решении системы (1). После отбрасывания « лишних» уравнений возможны два случая:

А) r=n , и в этом случае система (7) имеет треугольный вид;

Б) r<n, и система (7) имеет ступенчатый вид.

Переход системы (1) к равносильной системе (7) называется прямым ходом метода Гаусса, а нахождение переменных из системы (7)- обратным ходом .

Преобразования Гаусса удобно проводить не с самими уравнениями, а с расширенной матрицей системы (1), в которую, кроме матрицы А, дополнительно включен столбец свободных членов.

Пример. Решить методом Гаусса систему уравнений:

Расширенная матрица системы имеет вид:

12 3 -2 6

2 4 -2 -3 18

3 2 -1 2 4

2 –3 2 1 -8

Теперь все действия над уравнениями будут эквивалентны действиям над строками матрицы. Умножаем 1-ую строку на -, т.е. на -= -2, получаем

(-2 -4 -6 4 -12)

эту строку прибавляем ко второй строке, получаем новую 2-ю строку:

  1. 0 -8 1 6).

Аналогично умножим 1-ую строку на (-3) и сложим с третьей строкой; умножим 1-ую строку на (-2) и сложим с 4-ой строкой. Расширенная матрица после 1-ого шага имеет вид:

    1. 23 -2 6

0 0 -8 1 6

  1. -4 -10 8 -14

0 -7 -4 5 -20

Первая строка при преобразованиях Гаусса остается без изменений. Для дальнейшего хода необходимо переставить 2-ую и 3-ю строки ,чтобы

  1. 2 3 -2 6

0 -4 -10 8 -14

0 0 -8 1 6

0 -7 -4 5 -20

На 2-ом шаге, поскольку требуется только обнулить элементДля этого 2-ое уравнение умножим наи сложим с 4-м уравнением. 2-ое уравнение после умножения выглядит так:

( 0 7 -)

После 2-го шага матрица имеет вид:

12 3 -2 6

0 -4 -10 8 -14

0 0 -8 1 6

0 0 54/4 -36/4 -18/4

Поскольку в элементах последней строки одинаковый знаменатель, исключаем его; кроме того, можно сократить всю 4-ую строку на общий множитель 18:

12 3 -2 6

0 -4 -10 8 -14

0 0 -8 1 6

0 0 3 -2 1

На 3-м шаге исключаемиз 4-ого уравнения; для этого умножим 3-ю строку на 3/8 и сложим с 4-ой строкой:

12 3 -2 6

0 -4 -10 8 -14

0 0 -8 1 6

0 0 0 -13/8 26

Теперь матрица системы имеет треугольный вид: все элементы ниже главной диагонали равны нулю.

Далее совершаем обратный ход метода Гаусса. 4-ое уравнение системы можно записать так:

оно имеет решение: .

Подставляем полученное значение в 3-е уравнение:

Теперь в 3-м уравнении только одно неизвестное .Решаем уравнение, получаем. Далее подставим известныеиво второе уравнение:

Отсюда

Подставляем в 1-ое уравнение известные получаем решение:

Вопросы для самоконтроля:

      1. Чем отличается СЛАУ от систем произвольных уравнений?

      2. Привести примеры определенной и неопределенной СЛАУ.

      3. Какие основные методы решения СЛАУ?

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.