Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700413.doc
Скачиваний:
31
Добавлен:
01.05.2022
Размер:
5.69 Mб
Скачать

3.4. Физическая природа изнашивания инструментов

Износ инструмента (ИИ). Износ является важнейшим показателем его работоспособности, физическая природа изнашивания изучена еще очень плохо вследствие исключительной сложности контактных процессов, протекающих на передней и задней поверхностях инструмента. Существует ряд гипотез, объясняющих физическую природу изнашивания инструментов, работающих в различных условиях. По этим гипотезам основными причинами, приводящими к изнашиванию контактных поверхностей инструмента, являются [8, 10 и 11]:

— абразивное действие, оказываемое обрабатываемым материалом (абразивное изнашивание);

— адгезионное взаимодействие между инструментальным и обрабатываемым материалами (адгезионное изнашивание);

— диффузионное растворение инструментального материала в обрабатываемом (диффузионное изнашивание);

— химические процессы, происходящие на передней и задней поверхностях (окислительное изнашивание).

3.4.1. Абразивное изнашивание

При трении поверхности резания о задние поверхности и при трении стружки о переднюю поверхность инструмента твердые микрокомпоненты материала обрабатываемой детали царапают материал инструмента, постоянно разрушая его. Интенсивность абразивного изнашивания возрастает при увеличении содержания в сталях цементита (НВ 800) и сложных карбидов, в чугунах цементита и фосфидов, в силуминах карбида кремния, в жаропрочных сплавах интерметаллидов, которые сохраняют высокую твердость даже при высоких температурах резания.

Контактные поверхности инструмента могут также царапать частицы периодически разрушающегося нароста, твердость которого значительно превосходит твердость материала обрабатываемой детали. Особенно сильно изнашивается задняя поверхность, на которой появляются углубления в виде канавок, перпендикулярные к главному лезвию.

Абразивное изнашивание усиливается при резании в химически активных средах (например, в четыреххлористом углероде), ослабляющих сопротивляемость контактных поверхностей инструмента царапанию. Абразивное действие обрабатываемого материала становится тем сильнее, чем меньше отношение . Вследствие этого абразивное изнашивание заметнее проявляется при работе инструментами из углеродистых и быстрорежущих сталей и в меньшей степени при работе твердосплавными инструментами, твердость которых значительно выше.

3.4.2. Адгезионное изнашивание

Более глубокое исследование этого механизма изнашивания стало возможным благодаря применению микрорентгеноспектрального анализа и электроноскопии. Микрорентгеноспектральный анализ основан на возбуждении характеристического рентгеновского излучения в анализируемом веществе электронным зондом, сфокусированным до 1 мкм пучком электронов больших энергий. Минимальное количество вещества, которое можно обнаружить указанным методом, составляет 10-12 г. Использовав микрорентгеноструктурный анализ, Г.И. Грановскому и Н.А. Шмакову удалось установить, что на контактной поверхности стружки и поверхности резания наблюдаются скопления частиц инструментального материала. Продукты изнашивания инструмента имеют различную величину (для быстрорежущих сталей дисперсионного твердения размеры по площади проекции колеблются от 1 до 100 мкм2) и распределяются весьма неравномерно с удалением друг от друга на расстоянии от нескольких мкм до 1 мм. Частицы инструментального материала расположены в местах повышенных пластических деформаций и локальных температур, о чем свидетельствуют окислы, их окружающие.

В основе переноса частиц инструментального материала на стружку и деталь лежит явление адгезионного схватывания. На основании исследований, проведенных с рядом чистых металлов, появление прочных временных соединений между соприкасающимися поверхностями образуется в твердом состоянии в результате совместного пластического деформирования химически чистых, находящихся в контакте поверхностей, и может быть получено как при комнатной, так и при повышенных температурах. Для наступления схватывания недостаточно только сближения поверхностей на расстояние порядка параметра кристаллической решетки. Необходимо превышение определенного для каждой пары материалов энергетического порога. Схватывание есть бездиффузионный процесс, близкий к мартенситному или полиморфному превращению. Необходимое для схватывания энергетическое состояние может достигаться как за счет повышения температуры, так и за счет совместного пластического деформирования. Способность материалов к адгезионному взаимодействию резко повышается при температурах, близких к температуре рекристаллизации. При контакте одноименных материалов схватывание начинается при температурах, равных (0,3÷0,4) Тпл, а при контакте разноименных - при температурах, равных (0,35÷0,5) Тпл. Прочность адгезионных связей оценивают коэффициентом адгезии, представляющим собой отношение силы, необходимой для разделения контактируемых поверхностей, к величине действующей нагрузки.

В процессе резания между инструментом и деталью имеются условия для образования адгезионного схватывания. Фактическая площадь контакта между контактными поверхностями инструмента, стружкой и поверхностью резания составляет незначительную часть от номинальной площади контакта. При перемещении инструмента по детали происходит непрерывное разрушение и возобновление мостиков схватывания. Разрушение происходит под поверхностью контакта в обрабатываемом материале детали, как менее прочном из материалов контактируемой пары. По мнению Н.Н. Зорева, периодически повторяющееся схватывание и разрушение адгезионных соединений вызывает циклическое нагружение поверхностного слоя инструментального материала. По сравнению с обрабатываемым материалом материал режущей части инструмента является более хрупким, и указанный характер нагружения приводит к его локальному разрушению. Вырванные с контактных поверхностей инструмента объемы инструментального материала уносятся стружкой и передней поверхностью, а на его контактных поверхностях образуются борозды и кратеры. Масса инструментального материала, удаляемого с контактных поверхностей инструмента на единицу пути резания, зависит от прочности и твердости обрабатываемого материала. При прочих равных условиях, чем меньше отношение , тем сильнее изнашивание инструмента [10].

Специфический характер адгезионного изнашивания определяет сопротивляемость инструментальных материалов этому виду изнашивания. Чем выше циклическая прочность и ниже хрупкость инструментального материала, тем выше его износостойкость при равной теплостойкости, поэтому в зоне невысоких температур резания, когда теплостойкость инструментального материала не имеет решающего значения, износостойкость твердых сплавов может быть ниже, чем быстрорежущих сталей, имеющих более высокую прочность и лучше сопротивляющихся циклическим нагрузкам.

По интенсивности протекания адгезионного изнашивания инструментальные материалы различно реагируют на изменение температуры резания. Относительный износ инструментов из быстрорежущих сталей, хорошо сопротивляющихся циклическим контактным нагрузкам до температур 500 °С, остается почти постоянным или уменьшается при увеличении температуры резания. При нагреве твердых сплавов их хрупкость уменьшается, что способствует повышению сопротивляемости контактным нагрузкам, поэтому в интервале температур 500-750 °С повышение температуры резания уменьшает относительный износ твердосплавного инструмента.

Адгезионный износ инструмента можно уменьшить, применяя жидкости, создающие на контактных поверхностях защитные пленки, уменьшающие силы адгезии и препятствующие схватыванию обрабатываемого и инструментального материалов. Например, применение химически активных жидкостей, образующих пленки химических соединений, при работе твердосплавными резцами в зоне малых и средних скоростей резания повышает время работы резцов до переточки. Этого нельзя сказать об инструментах из быстрорежущих сталей, так как химически активные жидкости, ослабляя адгезионные явления, одновременно способствуют усилению химического изнашивания контактных поверхностей, связанного с химическим растворением мартенситной основы стали.