- •1. Ферменты: определение понятия, химическая природа, физико-химические свойства и биологическая роль ферментов.
- •2. Изоферменты. Строение, биологическая роль, диагностическое значение определения, изменение в онтогенезе и при патологии органа, диагностическое значение.
- •5. Ингибирование активности ферментов, виды ингибирования: обратимое, необратимое, конкурентное, неконкурентное
- •6. Регуляция активности ферментов: неспецифическая, специфическая (понятия). Механизмы специфической регуляции активности ферментов
- •9. Энзимопатии: понятие, классификация, молекулярные причины возникновения и механизмы развития, последствия, биохимическая диагностика.
- •10. Энзимодиагностика: классификация ферментов клетки, крови в энзимодиагностике, диагностическое значение, применение в педиатрии
- •11. Биохимические основы энзимотерапии, применение ферментов в энзимотеравии (примеры)
- •12. Цикл Кребса - схема реакций, ферменты, коферменты, энергетический баланс одного оборота. Тканевые особенности в детском возрасте, Регуляция.
- •14. Механизмы сопряжения и разобщения дыхания и фосфорилирования, эндогенные и экзогенные разобщители.
- •15. Микросомальное биологическое окисление (система транспорта электронов, цитохромы р-450, в-5). Биологическое значение, регуляция, особенности активности ферментов в детском возрасте
- •21. Нормогликемия, пути превращения углеводов в клетках организма и ключевая роль глюкозо-б-фосфата.
- •23. Аэробный путь окисления глюкозы, тканевые особенности, энергетический баланс. Эффект Пастера, регуляция.
- •24. Катаболизм глюкозы по пентозофосфатному пути, биологическая роль. Регуляция значение пентозофосфатного пути в обеспечении метаболических процессов в организме человека
- •25. Гипогликемия: биохимические причины возникновения, механизмы восстановления нормогликемии, биохимические особенности детского возраста
- •26. Гипергликемия: биохимические причины возникновения, механизмы восстановления нормогликемии, биохимические особенности детского возраста
- •27. Контринсулярные гормоны (глюкагон, адреналин, кортизол): химическая природа, молекулярные механизмы участия в углеводном обмене.
- •29. Сахарный диабет инсулинзависимый (ИЗСД, I тип): биохимическая диагностика, механизмы развития метаболических нарушений (гипергликемия, холестеринемия, кетонемия, ацидоз, гликозилирование белков), биохимические особенности детского возраста
- •36. Липолиз триглицеридов в белой и бурой жировой ткани
- •37. Механизмы β - окисления жирных кислот. Регуляция
- •38. Пути обмена АцКоА. Кетоновые тела: биологическая роль, кетонемия, кетонурия, причины и механизмы развития, последствия, биохимические особенности детского возраста.
- •39. Обмен холестерина в организме человека. Регуляция синтеза холестерина
- •40. Атеросклероз: биохимические причины, факторы риска, лабораторная диагностика риска развития атеросклероза: обмена и развития его нарушений, гендерные особенности.
- •41. Роль белка в питании: состав и классификация пищевых белков, заменимые и незаменимые аминокислоты. Принципы нормирования белка в питании детей и взрослых. Азотистый баланс организма человека.
- •45. Причины токсичности аммиака и пути обезвреживания аммиака (образование глн, цикл мочевины, регуляция).
- •47. Регуляторные системы организма. Определение понятия – гормоны, принципы классификации гормонов.
- •48. Уровни и принципы организации нейро – эндокринной системы. Концепции обратной связи.
- •49. Рецепция и механизмы действия стероидных гормонов.
- •50. Рецепция и механизмы действия пептидных гормонов
- •55. Белки плазмы крови: классификация, диагностическое значение электрофореграмм.
- •57. Альбумины сыворотки крови: физико-химических свойства, функции, обмен
- •60. Гемоглобин: виды, строение, функции, обмен в норме. Метгемоглобинредуктазная система.
- •61. Биохимические функции почек, особенности метаболических процессов в почках.
- •63. Состав первичной и конечной мочи, физико – химические показатели в норме.
- •64. Химический состав мочи в норме и при патологии. Клиренс: понятие, виды.
- •65. Ренин-ангиотензин-альдостероновая система (РААС) в поддержании гомеостаза натрия. Механизм действия альдостерона на молекулярном уровне в почке и слюнных железах
- •66. Антидиуретический гормон и регуляция водного баланса организма.
- •67. Биохимические гомеостатические функции печени, биохимические особенности в детском возрасте.
- •68. Функциональные пробы и нагрузки характеризующие состояние углеводного, липидного, белкового обмена и детоксицирующей функции печени у детей. И взрослых.
- •70. Белки соединительной ткани коллаген и эластин: особенности аминокислотного состава и структурной организации молекул. Витамин С в синтезе коллагена.
- •74.Витамин Д – этапы образования активных форм, их метаболические функции, механизм действия. Роль печени, почек в обмене витамина Д, патохимические причины развития рахита, показатели кальций-фосфорного обмена при рахите на разных стадиях болезни.
- •75.Паратиреоидный гормон (ПГ) и кальцитонин (КГ) – химическая природа, стимулы секреции, механизмы действия в регуляции обмена кальция и ремоделирования костной ткани, проявления гипо- и гипертиреоза
- •76.Биохимические процессы в остеобластах и остеокластах в ремоделировании костной ткани.
- •77.Белковые и минеральные компоненты костной ткани
- •78.Биохимия нервной ткани: особенности химического состава, метаболических процессов, синтез нейромедиаторов.
- •80.Миокард: особенности метаболических процессов, метаболические нарушения при гипоксии, клиническая биохимическая энзимодиагностика при инфаркте миокарда
- •81.Биохимия лактации: физико – химические свойства, химический состав грудного молока, характеристика ферментов молока. Изменение химического состава в процессе лактации: виды женского молока
- •82.Биохимия лактации: биохимические механизмы образования органических компонентов молока в лактирующей железе, белок лактальбумин, роль гормонов (пролактин, окситоцин, плацентарного лактоген, эстрогены, СТГ, Т3, Т4, кортизол, инсулин)
- •83.Витамины: химическая природа, классификация по растворимости в воде и биохимическим механизмам действия. Провитамины и механизмы их активации (на примере провитаминов Д и А). Эндогенные и экзогенные причины гипо- , гипер- и авитаминозов
- •84.Витамины-коферменты РР, В2 участие в метаболических процессах, биохимические механизмы проявления гиповитаминозов
- •Симптомы гиповитаминоза
- •Симптомы гиповитаминоза
- •86.Витамины-коферменты В12, фолиевая кислота участие в метаболических процессах, биохимические проявления гиповитаминозов
- •87.Витамин С: участие в метаболических процессах, биохимические механизмы проявления гиповитаминозов
- •89.Буферные системы плазмы крови: гидрокарбонатная, фосфатная, белковая Гемоглобиновая буферная система эритроцитов, связь с гидрокарбонатной системой плазмы и эритроцита. Механизмы участия карбоангидразы в регуляции КОС.
- •90.Кислотно-основный гомеостаз: биологическое значение постоянства внутренней среды организма., механизмы поддержания КОС, особенности в детском возрасте.
- •91.Нарушения КОС - классификация по механизмам? Биохимические пути компенсации.
β-окисление активируют: НАД+, АДФ (энергодефицит), ЖК, глюкагон, адреналин.
β-окисление ингибируют: НАДH2, АТФ, инсулин.
Голод, физическая нагрузка → ↑ глюкагон, ↑ адреналин → липолиз ТГ в адипоцитах → ↑ ЖК в крови → ↑ β-окисление в аэробных условиях в мышцах, печени → 1) ↑АТФ; 2) ↑АТФ, ↑НАДH2, ↑Ацетил-КоА, (↑ЖК) → ↓ гликолиз → ↑ экономию глюкозы, необходимую для нервной ткани, эритроцитов и т.д.
Пища → ↑ инсулин → ↑ гликолиз → ↑ Ацетил-КоА → ↑ синтез малонилКоА и ЖК
↑ синтез малонил-КоА → ↑ малонил-КоА → ↓ карнитинацилтрансферазы I в печени → ↓ транспорт ЖК в матрикс митохондрий → ↓ ЖК в матриксе → ↓ β-окисление ЖК
Окисление ЖК в пероксисомах
В пероксисомах β-окисления ЖК протекает в модифицированной форме. Этот путь обеспечивает катаболизм в печени длинноцепочечных ЖК (С=20, 22). Продуктами окисления является актоноил-КоА, Ацетил-КоА и Н2О2. Н2О2 синтезируется аэробной дегидрогеназой при взаимодействии ФАДН2 и О2. Актоноил и Ацетил переходят с КоА на карнитин и направляются в митохондрии, где окисляются с образованием АТФ.
38. Пути обмена АцКоА. Кетоновые тела: биологическая роль, кетонемия, кетонурия, причины и механизмы развития, последствия, биохимические особенности детского возраста.
Образование и транспорт Ацетил-КоА. В реакциях гликолиза из глюкозы образуется ПВК, который поступает в матрикс митохондрий и превращается в Ацетил-КоА с участием ПВК ДГ. Так как внутренняя мембрана митохондрий непроницаема для Ацетил-КоА, поэто-му он при участии цитратсинтазы конденсируется с ЩУК с образованием цитрата:
Ацетил-КоА + Оксалоацетат → Цитрат + HS-КоА.
Затем транслоказа переносит цитрат в цитоплазму. Перенос цитрата в цитоплазму проис-ходит только при увеличении количества цитрата в митохондриях, когда изоцитратдегидро-геназа и α- кетоглутаратдегидрогеназа ингибированы высокими концентрациями НАДН2 и АТФ (при избытке углеводов и низком энергопотреблении).
103
В цитоплазме цитрат расщепляется под действием фермента цитрат-лиазы:
Цитрат + HSKoA + АТФ → Ацетил-КоА + АДФ+ Pн + ЩУК
Синтез пальмитиновой кислоты
Образование малонил-КоА
Первая реакция синтеза ЖК — превращение ацетил-КоА в малонил-КоА. Это регуляторная реакция в синтезе ЖК катализируется ацетил-КоА- карбоксилазой.
Ацетил-КоА-карбоксилаза состоит из нескольких субъединиц, содержащих биотин.
Реакция протекает в 2 стадии:
1)СО2 + биотин + АТФ → биотин-СООН + АДФ + Фн
2)ацетил-КоА + биотин-СООН → малонил-КоА + биотин Ацетил-КоА-карбоксилаза регулируется несколькими способами:
1)Ассоциация/диссоциация комплексов субъединиц фермента. В неактивной форме ацетил-КоА-карбоксилаза представляет собой комплексы, состоящих из 4 субъединиц. Цитрат стимулирует объединение комплексов, в результате чего активность фермента увеличивается. Пальмитоил-КоА вызывает диссоциацию комплексов и снижение активности фермента;
2)Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. Глюкагон или адреналин через аденилатциклазную систему стимулируют фосфорилирование субъединиц ацетил-КоА карбоксилазы, что приводит к ее инактивации. Инсулин активирует фосфопротеинфосфатазу, ацетил-КоА карбоксилаза дефосфорилируется. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным;
Длительное потребление богатой углеводами и бедной липидами пищи приводит к увеличению секреции инсулина, который индукцирует синтез ацетил-КоА-карбоксилазы, пальмитатсинтазы, цитратлиазы, изоцитратдегидрогеназы и ускоряет синтез ЖК и ТГ. Голодание или богатая жирами пища приводит к снижению синтеза ферментов и, соответственно, ЖК и ТГ.
КЕТОНОВЫЕ ТЕЛА
104
К кетоновым телам (КТ) относят β-оксибутират, ацетоацетат и ацетон.
Синтез КТ
β-оксибутират и ацетоацетат синтезируются в митохондриях печени из ЖК. Ацетон образуется в крови неферментативно:
|
ê ðî âü |
|
|
|
|
ÖÒÊ |
Ï å÷åí ü |
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H C |
C |
|
SKoA |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ãëþ êàãî í |
O |
|
Ацетил-Ко А |
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
H C |
C SKoA |
|
|
|
|
ò è î ëàçà |
|
||||||||
|
|
|
|
|
|
|
|
|
|
Ацетил-Ко А |
3 |
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
Ацетил-Ко А |
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
ãëþ êàãî í |
|
|
|
|
|
|
|
HS-KoA |
|
||||||
|
|
|
|
|
|
|
|
|
|
Í ÀÄÍ |
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
O |
|
|
|
O |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
b-î ê è ñë åí è å |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
æè ðî âàÿ |
|
|
H C |
|
C |
C |
2 |
C |
|
|
|
SKoA |
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
+ |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
òê àí ü |
|
|
|
|
|
Ацето ацетил-Ко А |
|
||||||||||||||||||
|
|
|
|
|
Í ÀÄ |
|
|
|||||||||||||||||||
|
|
глицерин |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
|
|||||
|
|
|
|
|
HS-KoA |
|
|
|
|
|
|
|
|
|
H C C |
SKoA |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
ÒÃ |
|
|
|
ÆÊ |
|
ÆÊ |
ÃÌ Ã-Êî À ñè í ò àçà |
|
|
|
|
|
|
|
Ацетил-Ко А |
|||||||||||
|
ãëþ êàãî í |
|
|
|
HS-KoA |
èí ä. ÆÊ |
|
|
OH |
|
|
|
|
O |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
H |
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
ÕÑ |
|
HOOC |
|
C |
2 |
C |
|
|
C |
2 |
|
C |
SKoA |
|
||
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
ãëþ êàãî í |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
H C |
|
C |
CH |
|
|
|
|
|
|
|
|
|
CH |
3 |
|
|
|
|
|
|
||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
3 |
|
|
|
|
|
|
|
|
|
|
|
|
ÃÌ Ã-Êî À |
|
|
|
||||||||||
|
Ацето н |
|
|
|
|
|
|
|
|
|
O |
|
||||||||||||||
|
|
|
|
|
|
ÃÌ Ã-Êî À ëè àçà |
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
í |
åô åð- |
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H3C |
C |
SKoA |
|||||||
CO |
|
|
|
|
ì |
|
åí òà- |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ацетил-Ко А |
|||||||
|
|
|
|
|
òè âí |
î |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
H |
|
O |
|
|
|
|
|
|
|
|
H |
|
|
O |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|||||
HOOC |
C |
2 |
|
C |
CH |
|
|
|
|
HOOC |
|
C |
C |
|
|
CH |
|
|
|
|
||||||
|
|
3 |
|
|
|
|
|
|
|
3 |
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Ацето ацетат |
|
|
|
|
Ацето ацетат |
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
Í ÀÄÍ |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b-î êñè áóò è ðàò ÄÃ |
|||||||||
|
|
|
|
|
|
|
|
|
|
b-î ê è ñë åí è å |
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Í ÀÄ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
|
|
OH |
|
|
|
|
|
|
H |
|
|
|
OH |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
||||
HOOC |
C |
2 |
CH |
CH |
|
|
HOOC C |
CH |
|
CH |
|
|
|
|
|
|||||||||||
|
|
3 |
|
|
|
3 |
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
b-о ксибутират |
|
|
|
|
b-о ксибутират |
|
|
|
|
|
|
|||||||||||||||
1.Под действием тиолазы 2 ацетил-КоА взаимодействуют с образованием ацетоацетил-КоА;
2.Под действием ГМГ-КоА-синтазы с ацетоацетил-КоА взаимодействует третья молекула ацетил-КоА, образуя 3-гидрокси- 3-метилглутарил-КоА (ГМГ-КоА);
3.ГМГ-КоА-лиаза катализирует расщепление ГМГ-КоА на свободный ацетоацетат и ацетил-КоА;
105
4.Высокая концентрация НАДH2, образованная при активном β- окислении ЖК, восстанавливает в печени большую часть Ацетоацетата до β-оксибутирата. Фермент β-гидроксибутират ДГ;
5.Ацетоацетат и β-гидроксибутират выделяются в кровь;
6.При высокой концентрации в крови ацетоацетата часть его неферментативно декарбоксилируется, превращаясь в ацетон.
Регуляция синтеза КТ
Глюкагон в жировой ткани активируется распад ТГ. ЖК поступают в печень в большем количестве, чем в норме, что увеличивает скорость их β-окисления.
Глюкагон в печени направляет ЩУК на глюконеогенез, подавляя ЦТК. Образующийся из ЖК ацетил-КоА не окисляться в ЦТК, накапливается в митохондриях и идет на синтез КТ.
Регуляторный фермент синтеза КТ — ГМГ-КоА синтаза. Синтез ГМГ-КоА синтазы индуцируют высокие концентрации ЖК, ингибируют высокие концентрации НSКоА. Избыток ЖК в печени связывает НSКоА, концентрация НSКоА снижается, ГМГ-КоА-синтаза активируется. И наоборот, дефицит ЖК в печени увеличивает концентрацию НSКоА, фермент ингибируется.
Окисление КТ в периферических тканях
106
|
OH |
H |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
H C |
C |
C |
2 |
COOH |
|
|
|||
|
|
|
|
||||||
3 |
H |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b-о ксибутират |
|
|
|||||||
|
|
|
|
|
Í |
|
+ |
|
|
|
|
|
|
|
ÀÄ |
|
|
||
b-î êñè áóò è ðàò ÄÃ |
|
|
|
|
|
|
ÖÏ Ý |
3 ÀÒÔ |
|
|
|
|
|
|
Í |
ÀÄÍ |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
H |
|
|
|
|
|
||
|
|
|
|
|
|
|
|||
H C |
C |
C |
2 |
COOH |
|
|
|||
|
|
|
|||||||
3 |
|
|
|
|
|
|
|
|
|
Ацето ацетат |
|
|
|||||||
сукци н и л-Ко А- |
|
|
|
|
сукцин ил-Ко А |
ÀÄÔ+Ôí |
|||
àöåò î àöåò è ë-Êî À |
|
|
|
|
|
|
|
|
|
т ран сф ераза |
|
|
|
|
|
сукцин ат |
ÀÒÔ |
||
|
O |
H |
|
|
O |
|
HS-KoA |
||
|
|
2 |
|
|
|
|
|
||
H C |
C |
C |
C |
SKoA |
|
||||
|
|
|
|||||||
3 |
|
|
|
|
|
|
|
|
|
Ацето ацетил-Ко А |
|
||||||||
HS-KoA |
|
|
|
|
|
|
|
|
|
ò è î ëàçà |
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
H |
C |
C |
SKoA |
ÖÒÊ |
|
|
|
|
|
3 |
|
|
|
|
|
O |
|
|
|
Ацетил-Ко А |
|
|||
|
|
|
|
|
|
|
|
|
|
H C |
C |
|
|
SKoA |
|
|
|
||
3 |
|
|
|
|
|
|
|
|
|
Ацетил-Ко А |
|
ÖÏ Ý |
|||||||
|
|
|
|
|
|
|
|
|
24 ÀÒÔ |
Как и ЖК, КТ окисляются только в аэробных условиях, обеспечивая синтез АТФ.
1.β-Гидроксибутират, попадая в клетки, дегидрируется НАДзависимой дегидрогеназой и превращается в ацетоацетат. НАДН2 направляется ЦПЭ;
2.Сукцинил-КоА-ацетоацетат-КоА-трансфераза активирует ацетоацетат, при переносе КоА с сукцинил-КоА на ацетоацетат. Этот фермент не синтезируется в печени, поэтому печень не использует КТ как источники энергии;
3.Тиолаза расщепляет ацетоацетил-КоА на 2 Ацетил-КоА, которые направляются в ЦТК.
Биологическая роль КТ
КТ — хорошие топливные молекулы, окисление β-гидроксибутирата до СО2 и Н2О обеспечивает быстрый синтез 26 молекул АТФ. Окисление КТ, как и ЖК сберегает глюкозу, что имеет большое значение в энергоснабжении аэробных тканей при длительном голодании и физических нагрузках, когда
107
