Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Bykov-_gistologia_obschaya

.pdf
Скачиваний:
26
Добавлен:
02.04.2021
Размер:
13.05 Mб
Скачать

висимо от скорости, с которой оно происходит, в физиологических условиях завершается апоптозом. Развитие апоптоза индуцируется, по-видимому, вследствие накопления генетических ошибок и (или) снижения чувствительности клетки к стимулирующим ростовым сигналам (в результате нарушений рецепторного аппарата).

Обычно стареющие клетки, подвергающиеся апоптозу, располагаются в тканях и органах диффузно; в некоторых органах с закономерной миграцией клеток они накапливаются в участке завершения миграции (например, в сетчатой зоне коркового вещества надпочечника). Апоптоз клеток при их естественной смерти в результате старения прослеживается в тканях с трудом из-за немногочисленности гибнущих клеток. Значительно более массовая гибель характерна для тканей, подвергающихся инволюции, в особенности, после предшествующей гиперплазии;

(3)апоптоз при инволюции зрелых тканей особенно выражен в гормонально-зависимых органах после прекращения гормональной стимуляции. Он характерен для атрофирующихся органов половых систем (предстательной железы, придатка яичка, матки) после удаления гонад, для постлактационной инволюции молочной железы, послеродовой инволюции матки, атрофии периферических эндокринных желез (щитовидной железы, коркового вещества надпочечников) и гонад после удаления гипофиза и т.п.;

(4)апоптоз в клетках иммунной системы обеспечивает развитие и течение важнейших иммунных реакций (см. главы 8 и 9). Механизмом апопгоза гибнет большая часть лимфоцитов в центральных органах иммуногенеза, не прошедших процессы селекции (не располагающих набором рецепторов, необходимым для осуществления их нормальной функции). Этим же механизмом погибают и В-лимфоциты с низкоафинными рецепторами в герминативном центре периферических органов иммуногенеза; он лежит в основе цитотоксического действия Т- киллеров и NK-клеток на клетки-мишени,

атакже возрастной и акцидентальной инволюции тимуса и других органов иммунной системы. Очевидно, что разработка методов управления процессами апоптоза может способствовать коррекции иммунных нарушений (иммунодефицитов, аутоиммуных и аллергических заболеваний и др.);

(5)апоптоз в реакции тканей на действие повреждающих факторов. Как уже указывалось выше, апоптоз развивается при умеренном повреждении клетки разнообразными факторами, которые при более мощном повреждающем воздействии вызывают развитие некроза. Примером такого рода процессов служит развитие апоптоза при ин-

-101 -

фаркте миокарда - остром заболевании, которое развивается вследствие нарушения кровоснабжения участка сердечной мышцы. Хотя значительная часть клеток в очаге повреждения подвергается некрозу, в ткани, прилежащей к некротическому очагу, многие умеренно поврежденные клетки погибают механизмом апоптоза, тем самым расширяя область поражения. Она может еще более увеличиться в поздние сроки вследствие токсического действия веществ, выделяемых погибшими клетками и клетками, участвующими в формировании воспалительного инфильтрата вокруг зоны некроза. Сходная картина наблюдается при инсульте - гибели участка головного мозга. Очевидно, что эффект повреждающего действия ишемии, аноксии, различных токсинов и других факторов на ткани может быть уменьшен при воздействиях, обусловливающих торможение развития апоптоза в клетках, не получивших необратимых повреждений.

(6)апоптоз в развитии ряда дегенеративных и инфекционных заболеваний. Патологическая активация процесса апоптоза в нейронах, как предполагают, может играть важную роль в развитии таких заболеваний нервной системы, как болезнь Альцгеймера, паркинсонизм, болезнь Гентинггона, боковой амиотрофический склероз (болезнь Лу-Герига) и др. которые характеризуются резким уменьшением количества нейронов в определенных участках ЦНС. Терапия этих заболеваний должна быть направлена на блокирование процессов, приводящих к развитию апоптоза в клетках нервной ткани.

Апоптоз может запускаться в клетках человека при их инфицировании бактериями и вирусами. В частности, заражение вирусом иммунодефицита человека (ВИЧ) приводит к разрушению клеток иммунной и нервной систем, развивающихся клеток крови и клеток других тканей и органов механизмом апоптоза. Напротив, некоторые вирусы при заражении клеток блокируют их программу апоптоза. Так, вирус Эпштейна-Барра (вызывающий рак глотки, мононуклеоз и лимфомы) продуцирует ингибитор апоптоза, сходный с продуктом гена bcl-2, а вирус папилломы (вызывающий рак шейки матки) инактивирует ген р53. Указанные особенности необходимо учитывать при разработке новых методов лечения этих заболеваний;

(7)апоптоз в опухолевом росте. Апоптоз играет важную роль в механизмах развития опухолей (канцерогенезе) и действия противоопухолевых препаратов.

Угнетение апоптоза может служить одним из механизмов канцерогенеза. Это преположение основано на том, что в опухолевых клетках часто инактивированы регуляторные факторы, контролирующие их состояние и запускающие программу апоптоза. В частности, для

-102 -

многих опухолей характерна инактивация индуктора апоптоза гена р53 (см. выше) или усиленная экспрессия гена-"спасителя" bcl-2, продукт которого блокирует апоптоз. При этом клетки не только ускользают от апоптоза, но и приобретают резистентность к терапии.

Индукция апоптоза цитотоксических лимфоцитов опухолевыми клетками

служит механизмом защиты некоторых опухолей от разрушения иммунной системой. Этот эффект обусловлен тем, что клетки некоторых опухолей экспрессируют на своей поверхности особый лиганд FasL (см. главу 8), взаимодействие которого с соответствующим рецептором (белком Fas) на поверхности цитотоксических лимфоцитов вызывает гибель последних механизмом апоптоза. При этом клетки как бы меняются своими ролями: цитотоксические лимфоциты вместо того, чтобы уничтожать опухолевые клетки путем индуции в них апоптоза, сами оказываются их жертвой, подвергаясь апоптозу.

Индукция апоптоза как метод лечения опухолей. Установлено, что лечебный эффект при химиотерапии и радиотерапии новообразований обусловлен не развитием тяжелых необратимых нарушений генома опухолевых клеток (как полагали ранее), а относительно небольшими повреждениями ДНК, которые, однако, достаточны для запуска программы апоптоза в опухолевых клетках. Одним из перспективных направлений генной терапии опухолей может служить внесение в их клетки неизмененного гена р53 с целью индукции их апоптоза.

- 103 -

Глава 4

ОБЩИЕ ПРИНИЦИПЫ ОРГАНИЗАЦИИ И КЛАССИФИКАЦИЯ ТКАНЕЙ

ОБЩИЕ ПРИНИЦИПЫ ОРГАНИЗАЦИИ ТКАНЕЙ

Ткань - система клеток и их производных, специализированная на выполнении определенных функций.

Структурно-функциональными элементами тканей являются:

1.Клетки - главный элемент всех тканей, определяющий их основные свойства и дающий начало ряду приведенных ниже производных.

2.Межклеточное вещество - совокупный продукт деятельности теток данной ткани (в некоторых случаях, как, например, в крови - клеток других тканей). Его относительное содержание, состав и физико-химические свойства служат характерными признаками каждой ткани. В некоторых тканях межклеточное вещество благодаря своим свойствам может играть функционально ведущую роль (обеспечивая, например, механическую прочность хрящевых и костных тканей). Тем не менее, основным элементом указанных тканей все же являются клетки, поддерживающие нормальное состояние межклеточного вещества: последнее неизбежно разрушается при гибели клеток.

3.Постклеточные структуры - производные клеток, которые в ходе дифференцировки (чаще всего вследствие потери ядра и части органелл) утратили важнейшие признаки, характерные для клеток, но приобрели ряд свойств, необходимых для выполнения ими специализированных функций. К постклеточным структурам у человека относят эритроциты и тромбоциты (форменные элементы крови), роговые чешуйки эпидермиса, волос и ногтей.

4.Симпласты (от греч. syn - вместе и plastos - образованный) - структуры, образованные в результате слияния клеток с утратой их границ и формированием единой цитоплазматической массы, в которой находятся ядра. По механизму образования симпласты отличаются от морфологически сходных

сними многоядерных клеток, возникающих в результате повторного деления клеток без цитотомии. К симпластам относят остеокласты, наружный слой трофобласта, волокна скелетной мышечной ткани (последние содержат также и клетки);

-104 -

5. Синцитий - (от греч. syn - вместе и cytos, или kytos, - клетка) - сетевидная структура, возникающая вследствие неполной цитотомии при делении клеток с сохранением связи между ее элементами посредством цитоплазматических мостиков. Ранее синцитиальное строение приписывали ряду различных тканей человека (ретикулярной, эпителиям, образующим основу тимуса и пульпу эмалевого органа), однако при электронномикроскопическом исследовании обнаружилось, что они построены из отдельных клеток звездчатой формы, полностью отграниченных друг от друга плазмолеммами в участках контактов своих цитоплазматических отростков. Позднее с учетом этих данных такие структуры получили название "ложных" синцитиев. Единственный "истинный" синцитий в организме человека представлен частью сперматогенных элементов в семенных канальцах яичка. В зарубежной литературе термином "синцитий” обычно обозначают и симпластические структуры, а термин "симпласт" практически не используется.

Системный принцип организации тканей проявляется в том, что каждая ткань представляет собой систему (а не простую сумму) клеток и их производных, поэтому она характеризуется рядом свойств, которые отсутствуют у отдельных клеток. Вместе с тем, сами ткани входят в качестве элементов в системы более высокого уровня - органы, обладающие признаками, которыми не располагают отдельные ткани. Между тканевым и органным уровнями в ряде случаев выделяют уро¬вень морфофункциональных единиц - мельчайших повторяющихся структурных образований органа, выполняющих его функцию (напри¬мер, нефрон, фолликул щитовидной железы или печеночная долька).

РАЗВИТИЕ И РЕГЕНЕРАЦИЯ ТКАНЕЙ

Ткани возникли в ходе эволюции на определенных этапах филогенеза. В процессе индивидуального развития (онтогенеза), в значительной мере повторяющего филогенез, их источниками служат различные эмбриональные зачатки.

Закономерности эволюционного развития тканей обобщены в теории дивергентного развития тканей (Н.Г.Хлопин) и теории параллелизмов, параллельных рядов, или параллельного развития тканей (A.A. Заварзин).

Теория дивергентного развития тканей в филогенезе и онтогенезе

рассматривает эволюционные преобразования тканей (как и целых организмов) в качестве дивергентного процесса (от лат. divergo –

- 105 -

отклоняюсь, отхожу), в ходе которого каждый эмбриональный зачаток дает начало тканям, постепенно приобретающим все более выраженные различия своих структурных и функциональных характеристик. Эта теория раскрывает основные направления эволюции тканей.

Теория параллелизмов основана на сходстве строения тканей, выполняющих одинаковые функции, у неродственных, далеких друг от друга в филогенетическом отношении групп животных. Она демонстрирует неразрывность структурной и функциональной организации тканей и указывает на независимый ("параллельный") ход эволюции функционально однотипных тканей в разных ветвях животного мира, приведший к развитию сходства их структурной организации. Эта теория подчеркивает адаптивные свойства тканей и раскрывает причины их эволюции.

Теории дивергентного развития тканей и параллелизмов объединены в единую эволюционную концепцию развития тканей (А.А.Браун и В.П.Михайлов), согласно которой сходные структуры в различных ветвях филогенетического дерева возникали параллельно в ходе дивергентного развития.

Развитие каждого вида ткани (гистогенез) обусловлено процессами детерминации и дифференцировки их клеток.

Детерминация тканей (от лат. determinatio - определение) происходит в ходе их развития из эмбриональных зачатков и является процессом, закрепляющим ("программирующим") свойственное каждой ткани направление этого развития. Она обеспечивается ступенчатым ограничением (рестрикцией) потенций клеток (их коммитированием). На молекулярно-биологическом уровне этот процесс осуществляется путем определения набора тех или иных генов, дифференциальная активность которых (в генетически идентичных клетках) и обусловливает их специфичность. Так как генотип клеток всех тканей остается неизменным (за исключением клеток лимфоидной ткани), то возникающие вследствие дифференциальной экспрессии генов различия называются эпигеномными. Рефляция дифференциальной активности генов в тканях осуществляется разнообразными молекулярно-биологическими механизмами.

Вопрос об обратимости детерминации тканей в течение многих лет является предметом дискуссии. По мнению большинства гистологов, процесс детерминации зрелых тканей необратим и все возможные их превращения в любых условиях осуществляются лишь в рамках, ограниченных гистогенетическими потенциями конкретного тканевого типа.

- 106 -

Такое понимание детерминации отрицает возможность истинной метаплазии (от греч. metaplasso - превращать), т.е. преобразования зрелой ткани одною типа в зрелую ткань другого типа. Последние достижения генной инженерии, а также осуществленное в 1997 г. успешное получение полноценного клонированного животного (из зиготы, в которой ее собственное ядро было заменено ядром клетки зрелой ткани), со всей очевидностью указывают на необходимость более детальной разработки этой проблемы и, возможно, пересмотра и уточнения ряда принятых представлений.

Дифференцировка - процесс, в ходе которого клетки данной ткани реализуют закрепленные детерминацией потенции. При этом они проходят ряд стадий развития, постепенно приобретая структурные и функциональные свойства зрелых элементов. Дифференцировка клеток происходит как в разливающихся, так и в зрелых тканях и характеризуется экспрессией части генома, определенной процессом их детерминации. Ткань обычно содержит клетки с разным уровнем дифференцировки.

Дифферон - совокупность всех клеток, составляющих данную линию дифференцировки - от наименее дифференцированных (стволовых) до наиболее зрелых дифференцированных. Многие ткани содержат несколько различных клеточных дифферонов, которые взаимодействуют друг с другом. Последнее положение расходится с иногда высказываемыми представлениями о том, что каждая ткань образована непременно однотипными (морфологически и функционально сходными) клетками.

Стволовые клетки - наименее дифференцированные клетки данной ткани, являющиеся источником развития других ее клеток. Они имеются во всех тканях в ходе их эмбрионального развития и присутствуют во многих тканях зрелых организмов.

Важнейшие свойства стволовых клеток:

1.образуют самоподдерживающуюся популяцию,

2.редко делятся,

3.устойчивы к действию повреждающих факторов,

4.в некоторых тканях плюрипотентны, т.е. способны стать источником развития нескольких видов дифференцированных клеток.

Родоначальные клетки (progenitor cells в англоязычной литературе), или полустволовые клетки возникают непосредственно вследствие дифференцировки стволовых; активно размножаясь, они постепенно превращаются в клетки-предшественники (precursor cells в англоязычной литературе), которые дают начало дифференцированным зре-

- 107 -

лым клеткам, обеспечивающим выполнение функций данной ткани. Нередко термином "клетки-предшественники" обозначают все малодифференцированные потомки стволовой клетки.

Камбиальные элементы, или камбий (от лат. cambium - смена) -

совокупность стволовых клеток, родоначальных клеток и клеток-пред шественников данной ткани, деление которых поддерживает необходимое число ее клеток и восполняет убыль популяции зрелых элементов. В тех зрелых тканях, в которых не происходит обновления клеток (сердечная мышечная ткань, нейроны), камбий отсутствует. По распределению камбиальных элементов в ткани выделяют локализованный и диффузный камбий. В некоторых случаях камбий может располагаться за пределами ткани (вынесенный камбий).

Локализованный камбий характеризуется тем, что его элемента сосредоточены в конкретных участках ткани. К тканям с таким камбием относят, например, многослойные эпителии (камбий локализован в базальном слое), эпителий кишки (камбий сосредоточен в кишечных криптах), эпителий желудка (камбий расположен в шейке желудочных желез), эпителий слюнных желез (камбий сконцентрирован во вставочных протоках), эпителий коры надпочечника (камбий находится в клубочковой зоне).

Диффузный камбий отличается от локализованного тем, что его элементы рассеяны в ткани среди других, более дифференцированных клеток. Примерами тканей с диффузным камбием могут служить эпителий щитовидной и околощитовидной желез, гипофиза, эндотелий и мезотелий, гладкая мышечная ткань и др.

Вынесенный камбий встречается сравнительно редко. Его элементы, лежащие за пределами ткани, активируясь и в дальнейшем дифференцируясь. постепенно включаются в ее состав. Примером такого камбия служит совокупность камбиальных малодифференцированных эле-ментов хрящевой ткани, расположенных н надхрящнице (которая входит в состав хряща как органа, но не относится к собственно хрящевой ткани - см. главу 12). В костной ткани лишь часть камбиальных элементов (сосредоточенных в надкостнице) может быть отнесена к вынесенному камбию.

Дифференцированные зрелые клетки некоторых тканей могут сохранять способность к делению при соответствующей стимуляции (например, гепатоциты, тироциты, макрофаги). Другие зрелые клетки являются терминально (необратимо) дифференцированными - они полностью утрачивают способность к делению (например, нейроны, гранулоциты крови, остеоциты, каемчатые энтероциты, кардиомиоциты).

- 108 -

Регенерация ткани (от лат. regeneratio - возрождение) процесс, обеспечивающий ее обновление (новообразование ее элементов) в ходе нормальной жизнедеятельности (физиологическая регенерация) или восстановление после повреждения (репаративная регенерация). Репаративная регенерация осуществляется на основе тех же механизмов, что и физиологическая, но отличается от нее большей интенсивностью проявлений.

Хотя полноценная регенерация ткани включает обновление (восстановление) ее клеток и всех их производных, включая межклеточное вещество, основную роль в регенерации ткани играют клетки, так как именно они служат источником всех остальных компонентов ткани. Поэтому возможности регенерации ткани в значительной мере определяются способностью к регенерации ее клеток.

Регенерация клеток (клеточная регенерация) - процесс их обновления

(новообразования) в физиологических условиях или восстановления после повреждения (утраты) их части. Регенерация клеток осуществляется путем их митотического деления - механизмом пролиферации (от лат. proles - потомство и fera - несу). Активность пролиферации клеток каждой ткани контролируется факторами роста, гормонами, цитокинами, кейлонами, характером функциональных нагрузок.

По уровню обновления клеток все ткани организма подразделяются на три группы (см. главу 3):

1.стабильные клеточные популяции - долгоживущие клетки которых полностью утратили способность к делению (нейроны, кардиомиоциты);

2.растущие клеточные популяции, состоящие из долгоживущих клеток, выполняющих специализированные функции, которые способны при стимуляции делиться и претерпевать полиплоидизацию (эпителий почки, печени, поджелудочной, щитовидной и предстательной желез);

3.обновляющиеся клеточные популяции, которые состоят из постоянно и быстро обновляющихся клеток (эпителий кишки и эпидермис, форменные элементы крови).

Внутриклеточная регенерация - процесс, обеспечивающий не-

прерывное обновление структурных компонентов клеток в физиологических условиях или после повреждения. В норме при сбалансированности анаболических и катаболических процессов общий объем клетки и содержание в ней ультраструктурных компонентов остаются сравнительно стабильными. Внутриклеточная регенерация универсальна, она свойственна всем тканям организма человека. В некоторых тканях (сер-

- 109 -

дечная мышечная ткань) или клеточных линиях (нейроны) она является единственным способом обновления структур, в других в различной мере сочетается с обновлением их клеток.

Гипертрофия клеток (от греч. hyper - избыточный и trophe - питание) - увеличение их объема и функциональной активности при одновременном нарастании содержания внутриклеточных структур - развивается вследствие осуществления усиленной внутриклеточной регенерации в условиях преобладания анаболических процессов над катаболическими (например, при адаптации гладких или сердечных миоцитов к усиленной нагрузке или активации секреторных процессов в гормонально зависимых железистых клетках). При гипертрофии обычно в наибольшей степени нарастает объем тех внутриклеточных компонентов, которые обеспечивают адаптацию данного вида клеток к изменившимся условиям (в мышечных клетках - элементов сократительного и энергетического аппаратов, в железистых - синтетического). Гипертрофия клеток нередко сопровождается их полиплоидизацией, создающей возможности для активации процесса транскрипции.

Атрофия клеток - (от греч. а - отрицание и trophe - питание) - снижение их объема, массы, функциональной активности и содержания внутриклеточных структур вследствие ослабления процессов внутриклеточной регенерации и преобладания катаболических процессов над анаболическими. Атрофия клеток может явиться результатом их бездеятельности, гормонального дефицита (в гормонально зависимых тканях), недостаточности питания, возрастных изменений (старения), воздействия неблагоприятных физических, химических и др. факторов.

Гипертрофия ткани - увеличение ее объема, массы и функциональной активности - может явиться следствием:

(1)гипертрофии ее отдельных клеток при их неизменном числе (в тканях с отсутствием клеточной регенерации);

(2)гиперплазии (от греч. hyper - избыточный и plasis - образование) - увеличения числа ее клеток путем их избыточного новообразования. Последнее может обеспечиваться путем активации клеточного деления - пролиферации (от греч. proles - потомок, fero - несу) - в тканях с высокой активностью клеточной регенерации или (и) в результате ускорения дифференцировки малодифференцированных предшественников;

(3)сочетания обоих процессов.

Атрофия ткани - снижение ее объема, массы и функциональной активности - может явиться следствием: (а) атрофии ее отдельных клеток при их неизменном числе; (б) уменьшения числа ее клеток; (в) сочетания обоих процессов.

- 110 -