Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vse_otvety_na_ekzamen_v_odnom_fayle.docx
Скачиваний:
102
Добавлен:
13.11.2020
Размер:
46.88 Mб
Скачать

Мембранно-ионная теория происхождения потенциала покоя, ионные каналы и градиенты. Величина и способы регистрации потенциала покоя.

Потенциа́л поко́я — мембранный потенциал возбудимой клетки (нейрона, кардиомиоцита) в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от −55 до −100 мВ.

Все ионные каналы подразделяются на следующие группы:

1. По избирательности:

а) селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов;

б) малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество.

2. По характеру пропускаемых ионов:

а) калиевые;

б) натриевые;

в) кальциевые;

г) хлорные.

3. По скорости инактивации, т.е. закрывания:

а) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление;

б) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

4. По механизмам открывания:

а) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны;

б) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (ФАВ) (нейромедиаторов, гормонов и т.д).

Мембранный потенциал регистрируется с помощью микроэлектродного метода. Для этого через мембрану, в цитоплазму клетки вводится тонкий, диаметром менее 1 мкм стеклянный микроэлектрод. Он заполняется солевым раствором. Второй электрод помещается в жидкость, омывающую клетки. От электродов сигнал поступает на усилитель биопотенциалов, а от него на осциллограф и самописец

Метод повреждения чаще используется при регистрации потенциала покоя на макропрепарате – мышце, нерве

1. Активный транспорт. Он осуществляется с помощью энергии АТФ. К этой группе транспортных систем относятся натрий-калиевый насос, кальциевый насос, хлорный насос. Против градиента

2. Пассивный транспорт. Передвижение ионов осуществляется по градиенту концентрации без затрат энергии. Например, вход калия в клетку и выход из неё по калиевым каналам.

3. Сопряженный транспорт. Противоградиентный перенос ионов без затрат энергии. Например, таким образом происходит натрий-кальциевый, калий-калиевый обмен ионов. Он происходит за счет разности концентрации других ионов.

4

Мембранно-ионные механизмы возникновения потенциала действия. Движение ионов натрия и калия при возбуждении. Изменение возбудимости. Цикл Ходжкина-Хаксли

Модель Ходжкина — Хаксли — математическая модель, описывающая генерацию и распространение потенциалов действия в нейронах.

Они исследовали гигантское нервное волокно кальмар: при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму пика. Они назвали это колебание потенциалом действия. Так как электрический ток для возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны отрицательный электрод – катод, а внутреннюю положительный - анод. Это приведет к снижению величины заряда мембраны – ее деполяризации. При действии слабого допорогового тока происходит пассивная деполяризация. Если силу тока увеличить до определенного предела, то в конце периода его воздействия на плато появится небольшой самопроизвольный подъём – местный или локальный ответ.

На кривой потенциала действия выделяют следующие фазы:

1. Локальный ответ (местная деполяризация), предшествующий развитию ПД.

2. Фаза деполяризации. Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше нуля. Поэтому мембрана приобретает противоположный заряд – внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала. Продолжительность этой фазы у нервных и мышечных клеток 1-2 мс.

3. Фаза реполяризации. Она начинается при достижении определенного уровня МП (примерно +20 мВ). Мембранный потенциал начинает быстро возвращаться к потенциалу покоя. Длительность фазы 3-5 мс.

4. Фаза следовой деполяризации или следового отрицательного потенциала. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длится 15-30 мс.

5. Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу МП на некоторое время становится выше исходного уровня ПП. Ее длительность 250-300 мс.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые, и медленные натриевые каналы.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ), сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия, т.е. калиевый выходящий ток. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации. Возрастание МП приводит к закрыванию и активационных ворот натриевых каналов, что еще больше снижает натриевую проницаемость мембраны и ускоряет реполяризацию. Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной после генерации ПД калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос, выносящий вошедшие в клетку во время ПД ионы натрия.

5