Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
46
Добавлен:
02.02.2015
Размер:
1.03 Mб
Скачать

____________________________________________Тема 5. Теория___

Сложные проценты. Воспользуемся формулой An = A×(1 + r)n и получим A4 = 10×(1+0,8)4 = 104,98 млн. ден. ед.

Вывод. При одной и той же процентной ставке и первоначальной сумме вклада рост при вкладе под сложные проценты происходит значительно быстрее, чем при вкладе под простые проценты.

2) Найдем наращенное значение вклада по кварталам 4-го года, воспользовавшись формулой для равномерного начисления процентов

где m = 4 (начисление поквартально), n = 4, r = 0,8, A = 10.

Тогда 184,88 млн.ден.ед.

Найдем наращенное значение вклада в конце 4-го года при ежемесячном начислении процентов. В той же формуле теперь m=12, остальные значения – те же :

221,50 млн.ден.ед.

Вычислим также наращенное значение вклада по формуле непрерывного начисления процентов:

An = A×er n; A4 = 10 ×e0,84 = 10e3,2 = 245,33 млн.ден.ед.

Вывод. Рост денежного вклада существенно зависит от числа m , т.е. от того, сколько раз в год начисляются сложные проценты. Чем больше m, тем быстрее растет вклад.

3) Увеличение первоначального вклада в 1,5 раза :

An = 1,5·A = 15 млн.ден.ед.

Рассчитаем требуемые величины :

по основной формуле начисления сложных процентов

по формуле непрерывного начисления процентов

=0,69

=0,51

=10,67

=10,14

= 1,43

=0,61

Сравнение результатов показывает, что существенная разница наблюдается только при вычислении дисконтируемой суммы.

Тема 5. Дифференциальное исчисление функции одного аргумента Приращения функции и аргумента

Пусть х – аргумент (независимая переменная); y = y(x) – функция.

Возьмем фиксированное значение аргументах = х0 и вычислим значение функции y0 = y(x0). Теперь произвольным образом зададим приращение (изменение) аргумента и обозначим его х (х может быть любого знака).

Аргумент с приращением – это точка х0 +х. Допустим, в ней также существует значение функции y = y(x0+ х) ( рис.4).

Таким образом, при произвольном изменении значения аргумента получено изменение функции, которое называется приращениемзначения функции, обозначается

и не является произвольным, а зависит от вида функции, значения х0 и величины .

В математическом анализе, в частности, в дифференциальном исчислении, рассматривают бесконечно малые (БМ) приращения аргумента и функции.

Приращения аргумента и функции могут быть конечными, т.е. выражаться постоянными числами. В этом случае их иногда называют конечными разностями.

В экономике конечные приращения рассматриваются весьма часто. Например, в таблице приведены данные о длине железнодорожной сети некоторого государства. Очевидно, приращение длины сети вычисляется путем вычитания предыдущего значения из последующего. Будем рассматривать длину ж/д сети как функцию, аргументом которой будет время (годы).

Годы

Длина ж/д на 31.12, тыс.км.

Приращение

Среднегодовой прирост

1993

74,5

76,9 − 74,5=2,4

2,4/3 = 0,8

1996

76,9

81,0 − 76,9=4,1

4,1/4 = 1,0

2000

81,0

83,5 − 81,0=2,5

2,5/3 = 0,8

2003

83,5

84,4 − 83,5=0,9

0,9/1 = 0,9

2004

84,4

Само по себе приращение функции (в данном случае длины ж/д) сети) плохо характеризует изменение функции. В нашем примере из того, что 2,5 > 0,9 нельзя заключить, что сеть росла быстрее в 2000-2003 годах, чем в 2004 г., потому что приращение 2,5 относится к трехлетнему периоду, а 0,9 – всего к одному году. Поэтому естественно, что приращение функции приводят к единице изменения аргумента. Приращение аргумента по периодам: 1996 – 1993 =3; 2000 – 1996 = 4; 2003 – 2000 = 3; 2004 – 2003 = 1.

Получим то, что в экономической литературе называют среднегодовым приростом.

Дифференцирование функции одной переменной (производная и дифференциал) Производная функции

Приращения аргумента и функции в точке х0 можно рассматривать как сравнимые бесконечно малые величины (см. тему 4, сравнение БМ), т.е. БМ одного порядка.

Тогда их отношение будет иметь конечный предел, который определяется как производная функции в т х0.

  • Предел отношения приращения функции к БМ приращению аргумента в точке х=х0 называется производной функции в данной точке.

Символическое обозначение производной штрихом (а, вернее, римской цифрой I) введено Ньютоном. Можно использовать еще нижний индекс, который показывает, по какой переменной вычисляется производная, например, . Широко используется также другое обозначение, предложенное основоположником исчисления производных, немецким математиком Лейбницем:. С происхождением этого обозначения можно подробнее познакомиться в разделеДифференциал функции и дифференциал аргумента.

  • Производная, вычисленная в определенной точке – эточисло (если соответствующий предел существует и конечен).

Данное число оценивает скорость изменения функции, проходящей через точку .

Установим геометрический смысл производной функции в точке (рис.6). С этой целью построим график функции y = y(x) и отметим на нем две точки, определяющие изменение y(x) в интервале

, где .

Касательной к графику функции в точке М0 будем считать

предельное положение секущей М0М при условии(точкаМскользит по графику функции к точкеМ0 ).

Рассмотрим. Очевидно,. Если точкуМустремить вдоль графика функции по направлению к точкеМ0, то значениебудет стремиться к некоторому пределу, который обозначим. При этом

.

Предельный угол совпадает с углом наклона касательной, проведенной к графику функции в т. М0, поэтому производная численно равнаугловому коэффициенту касательной в указанной точке.

геометрический смысл производной функции в точке.

Таким образом, если известно значение производной функции в этой точке х0 , можно записать уравнения касательной и нормали (нормаль – это прямая, перпендикулярная касательной) к графику функции в этой точке :

касательная - ,

нормаль - .

Представляют интерес случаи, когда эти прямые расположены горизонтально или вертикально (см. тему 3, частные случаи положения прямой на плоскости). Тогда,

если

если

Нахождение производной функции определяется как специальная математическая операция - дифференцирование функции. При этом различают две ситуации:

  • 1. Если функция в точке х0 имеет конечную производную, то она называется дифференцируемой в этой точке.

  • 2. Функция, дифференцируемая во всех точках некоторого интервала, называется дифференцируемой на этом интервале.

Теорема. Если функция y = y(x) дифференцируема в точке х0, то она в этой точке непрерывна.

Однако обратное утверждение, что непрерывная функция всегда дифференцируема не всегда верно так как операция дифференцирования может изменить область определения производной как функции.

Соседние файлы в папке Новые Изменения мои Part2