Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
210
Добавлен:
02.02.2015
Размер:
725.5 Кб
Скачать

____________________________________________Тема 4. Теория___

Элементы математического анализа. Функция одной переменной

  • Переменная у называется функцией одной переменной х, если каждому значению переменной х из некоторой области соответствует одно или несколько значений переменной у.

В настоящем разделе используются общепринятые обозначения (если не оговаривается что-либо иное):

х – независимая переменная или аргумент функции;

у – переменная, зависящая от х, или функция.

Задать функцию – это значит задать правило, закон, по которому при конкретном значении аргумента х можно найти значение функции у. Такой закон называют функциональной зависимостью y = f(x) или, что то же самое у = у(х). Функциональная зависимость может быть изображена графиком функции в координатах (х, у).

Графики и основные свойства элементарныхфункций приведены в приложении.

Тема 4: Предел и непрерывность функции. Техника вычисления

Пределов. Классификация разрывов функции

Понятие предела функции в точке.

Односторонние пределы функции в точке

Понятие предела функции в точке связано с особенностями вычисления значений функции в некоторых точках, когда при подстановке значения х = а получаем неопределенное, неоднозначное выражение для вычисления у. Например: ;

; .

В таких случаях требуется проанализировать поведение функции вблизи точки х = а, и этот анализ основан на ряде понятий, которые вводятся в данной теме.

Любой интервал (; ), содержащий точку х, т.е. <x <, называется окрестностью точки х. Если выбрать любое положительное число , то -окрестностью (дельта-окрестностью) называется интервал (х-; х+). -окрестность симметрична относительно точки х, чего может и не быть в случае произвольной окрестности.

Неравенство илиозначает, что точка, т.е. принадлежит - окрестности точки а.

Аналогично можно выбрать - окрестность (эпсилон-окрестность) для значения функции, равного b.

Тогда принадлежность произвольной точки у -окрестности точки bможно записать в виде:

Теперь дадим определение предела функции в точке, основываясь на понятии окрестности точки на языке " - ".

Пусть функция у = у(х) определена в некоторой окрестности точки х = а. В самой точке х = а функция может быть и не определена.

Число b называется пределом функции y = y(x) при x a (х стремящемся к а) если для любого сколь угодно малого положительного числа >0 можно найти такое число >0, зависящее от , что для всех х, удовлетворяющих неравенству справедливо неравенство.

Выражение "х стремится к а" означает, что независимая переменная х принимает значения, все более близкие к значению х = а. В общем случае они могут быть расположены как слева, так и справа от х = а. Например, пусть xi тем ближе к а, чем больше номер i (i=1,2,3)

Приведем геометрическую интерпретацию определения предела функции в точке, для функции, определенной в точке а.

Из рисунка видно, что при произвольном выборе - окрестности точки b, можно найти симметричную -окрестность точки а (для этого надо выбрать = min {1, 2}, что для любого значения переменной х, попадающей в -окрестность точки а, соответствующее значение функции y(x) будет попадать в -окрестность точки b. Именно об этом говорится в определении предела на языке неравенств.

Факт существования предела функции, равного числуb при х а записывается:

При определении предела не уточнялось, каким образом хстремится ка, поэтому введем понятияодносторонних пределовфункции в точке илипределы слева и справа.

Если независимая переменная х принимает значения, все более близкие к а, но остается при этом меньше а (слева от а), то можно получить левосторонний предел функции или предел слева:

Число b1 (b2 ) называется пределом функции слева (справа) при х а−0 ( х а+0) если для любого, сколь угодно малого числа >0 можно найти такое число ( ) >0, что для всех х, удовлетворяющих неравенству а− < x < a (а < x < a+) справедливо неравенство:

.

Обозначим:

Заметим, что если независимая переменная х может стремиться к числу а слева или справа, функция y может стремиться к значению b сверху или снизу.

Например, функция, представленная на рис. 1, стремится к значению b сверху, если х а+0 (справа) и снизу, если х а−0 (слева). Записывается это так:

Соседние файлы в папке Новые Изменения мои Part2