Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические модели в биологии.pptx
Скачиваний:
155
Добавлен:
28.06.2014
Размер:
2.65 Mб
Скачать

Рис. 5.3. Фазовый портрет системы 5.17. Особая точка типа «центр».

а – параметры системы: x = 4, xy = 0,3, y = yx = 0,4

б – параметры системы: x =2, xy = 0,3, y = yx = 0,4

Здесь , - отклонения численностей от их стационарных значений:

Характеристическое уравнение системы (5.18):

Корни этого уравнения чисто мнимые:

Таким образом, исследование системы показывает, что траектории вблизи особой точки являются концентрическими эллипсами, а сама особая точка – центром. Расcматриваемая модель Вольтерра и вдали от особой точки имеет замкнутые траектории, хотя форма этих траекторий уже отличается от эллипсоидальной, и определяется параметрами системы (рис. 5.3).

Изменения численности жертвы и хищника во времени представляют собой колебания, причем колебания численности хищника отстают по фазе от колебаний жертв.

Как мы уже отмечали в Лекции 4, особая точка типа центр устойчива по Ляпунову, но не асимптотически. Покажем на данном примере, в чем это проявляется. Пусть колебания x(t) и y(t) происходят таким образом, что изображающая точка движется по фазовой траектории 1 (рис 5.3).

В момент, когда точка находится в положении М1, в систему добавляется извне некоторое число особей y такое, что изображающая точка переходит скачком из точки M1 в точку M2 .

Если после этого систему предоставить самой себе, колебания x(t), y(t) уже будут происходить с большими амплитудами, чем прежде, и изображающая точка будет двигаться по траектории 2.

Это и означает, что колебания в системе неустойчивы: они навсегда изменяют свои характеристики при внешнем воздействии.

Рис. 5.4. Кривые численности зайца и рыси в Канаде (по К. Вилли, В. Детье, 1974)

В дальнейшем мы рассмотрим модели, описывающие устойчивые колебательные режимы, и покажем, что на фазовой плоскости такие асимптотически устойчивые периодические движения описываются предельными циклами.

На рис. 5.4 кривые колебаний численности пушных зверей по данным компании Гудзонова залива о числе заготовленных шкурок.

Во всех классических учебниках в течение многих лет колебательный характер этих изменений приводили как подтверждение гипотез, положенных в основу модели Вольтерра, которую мы только что рассмотрели.

Действительно, периоды колебаний численности зайцев (жертв) и рысей (хищников) примерно одинаковы и составляют порядка 9 – 10 лет.

При этом максимум численности зайцев опережает, как правило, максимум численности рысей на один год. Можно полагать, что мы видим регулярные колебания, осложненные случайными факторами, связанными с погодой и проч.

Однако возможна и другая интерпретация этих данных наблюдений на основе моделей детерминированного хаоса.

О дискретных моделях такого типа мы уже говорили в Лекции 3. Непрерывные модели популяционной динамики, приводящие к детерминированному хаосу, мы рассмотрим в Лекции 9.

Серьезным недостатком рассмотренной модели Вольтерра является неустойчивость решений по отношению к малым случайным воздействиям, приводящим к изменению переменных. Кроме того, в силу «негрубости» этой системы произвольно малое изменение вида правых частей уравнений (величин параметров системы) приведет к изменению типа особой точки, и, следовательно, к изменению характера фазовых траекторий.

Поскольку природные системы подвергаются огромному количеству случайных воздействий, реалистическая модель должна быть по отношению к ним устойчивой. Поэтому негрубые системы не могут давать адекватное описание природных явлений.

Различные модификации рассмотренной нами системы, изученные самим Вольтерра и другими авторами, лишены этих недостатков. Наиболее широко известные из них будут рассмотрены в Лекции 9. Здесь мы остановимся на модели, которая учитывает самоограничение в росте обеих популяций. На ее примере видно, как может меняться характер решений при изменении параметров системы.

Итак, рассмотрим систему:

Система (5.19) отличается от ранее рассмотренной системы наличием в правых частях членов:

Эти члены отражают тот факт, что численность популяции жертв не может расти до бесконечности даже в отсутствие хищников в силу ограниченности пищевых ресурсов, ареала существования и проч. Такие же «самоограничения» накладываются на популяцию хищников.

Система имеет два стационарных решения: нулевое и ненулевое. Анализ показывает, что нулевое решение представляет собой неустойчивый узел. Рассмотрим систему алгебраических уравнений, решение которых дает координаты ненулевого стационарного состояния.

(5.20)

Стационарное решение:

Корни характеристического уравнения системы, линеаризованной в окрестности особой точки:

Из выражения для характеристических чисел видно, что если выполнено условие

то численности хищников и жертв совершают во времени затухающие колебания. Система имеет особую точку – устойчивый фокус.

Рис. 5.5. Фазовый портрет системы 5.19

а – устойчивый фокус,

параметры системы: x = 2, xy = 18, x=1, y = 3, yx = 5, y=1

б – устойчивый узел,

параметры системы: x = 2, xy = 1, x=1, y = 3, yx = 1, y=1

При изменении знака неравенства на обратный точка становится устойчивым узлом.

И в том и в другом случае стационарное состояние асимптотически устойчиво, и решение устойчиво к малым изменениям правых частей уравнений.

Таким образом, самоограничение популяции приводит к устойчивости ее численности.

Важно отметить, что простейшие вольтерровские модели, которые мы рассмотрели, не могут описывать устойчивые колебания с постоянными периодом и амплитудой.

Для описания таких колебаний необходимы нелинейные модели, имеющие на фазовой плоскости предельный цикл.

Они будут рассмотрены в Лекции 8.