Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биохимия атеросклероза

.pdf
Скачиваний:
47
Добавлен:
20.06.2014
Размер:
4.45 Mб
Скачать

158 Garry X. Shen

seen in IHD or diabetic patients with normal cholesterol levels [99]. Mechanism for pleiotropic effects of statins has been actively studied [100]. Growing amounts of evidence demonstrate that statins are helpful in the management of thrombotic, inflammatory, autoimmune, and neurodegenerative diseases as well as organ transplantations, in addition to atherosclerotic cardiovascular diseases. Statin treatment decreases oxLDL–LDL ratio in plasma and the thickness of carotid intima in patients with carotid artery atherosclerosis [101]. Statins reduce the levels of TF, fibrinogen, PAI-1, or platelet aggregation in patients with hypercholesterolemia or diabetes [102–105]. In a recent study conducted by our group, simvastatin reduced the levels of PAI-1 and prothrombin fragment 1 and 2 (F1+2) in plasma of type 2 diabetic patients. F1+2 is a marker of thrombin generation. Positive correlations were found between PAI-1, but not F1+2, and total or LDLcholesterol levels in diabetic patients [106]. The findings suggest that certain antithrombotic activities of statins may be secondary to cholesterol lowering, but others may be independent from cholesterol metabolism. The mechanism for statin-induced antithrombotic effects remains unclear. Results from experimental studies suggest that Ras and other prenylated G-proteins, including Rho, Rac, and Rap, are implicated in statin-mediated cellular activities [107, 108]. Statins have outstanding safety profiles. The major side effect of statins, myotoxicity, may be largely prevented by avoidance of coadministration of certain medications [109]. Statins are potential medications for preventing thrombosis in patients with hypercholesterolemia, diabetes, or increased oxidative stress.

Renin–Angiotensin Antagonists and Thrombosis

The renin–angiotensin system plays a critical role in the development of atherosclerosis, endothelial dysfunction, thrombosis, and diabetic nephropathy. Angiotensin II (AII), the major biological activator of the system, is converted from angiotensin I by angiotensin-converting enzyme (ACE). AII is a potent vasoconstrictor and a stimulator of aldosterone, an adrenal salt–water-retention hormone. AII also stimulates the proliferation of vascular cells and predisposes to vascular inflammation, thrombosis, and oxidative stress. Most biological effects of AII are mediated through AII receptor-1 (AT1) on cell surface [110]. ACE inhibitors are commonly used in the treatment of hypertension, heart failure, diabetic nephropathy, and metabolic syndrome [111]. Captopril, the first generation of ACE inhibitors, reduces platelet deposition and thrombus formation in patients with MI [112]. Ramipril reduced PAI-1 antigen and activity but did not significantly affect tPA level in MI patients in HEART study [113]. Enalapril reduced the levels of TF and MCP-1, but not TFPI, in patients with acute MI [114]. AT1 antagonists inhibit platelet aggregation and thrombus formation [115, 116]. ACE inhibitors and AT1 antagonists reduced the oxidation of LDL in humans and in several types of animal models including apolipoprotein E knockout

Chapter 8. Oxidatively Modified LDL and Thrombosis

159

mice [117–122]. The inhibitory effect of AII antagonists on the oxidation of LDL may contribute, at least in part, to their antithrombotic effects.

Conclusion

Oxidative modification of LDL plays a critical role in the development of thrombosis in addition to atherosclerosis. Oxidized or minimally modified LDL cause inflammation on endothelium, which leads to a prothrombotic surface in vascular lumen. Oxidized or minimally modified LDL may activate platelet and coagulation, but reduces fibrinolytic and anticoagulation activity in vasculature (Fig. 8.3). Reduction of oxidative stress or the oxidation of LDL may be an additional therapeutic target for the prevention of thrombosis as well as atherosclerosis. The results from large trials on the effects of antioxidant vitamins for preventing cardiovascular events were not encouraging. Statins and AII antagonists may prevent thrombosis in patients with high risks through inhibiting oxidative modification of LDL.

Acknowledgments: The author thanks for the collaborations from Drs. John W. Fenton II, George King, Liam J. Murphy, Peter Cattini, and Sora Ludwig, contributions from students, postdoctoral fellows, and other staff working in his laboratories to relevant studies and grant supports from Canadian Institute of Health Research, Canadian Diabetes Association, Heart Stroke Foundation of Canada, Manitoba Medical Service Foundation, Manitoba Health Research Council, University of Manitoba, and Dr. Paul Tholackson Foundation, and research space provided by Health Sciences Centre Foundation.

 

 

Oxidative modification of LDL

 

 

Oxidative

 

 

 

 

 

Endothelial Inflammation

Coagulation Hypofibrinolysis

Platelet

stress

dysfunction

 

 

activation

Atherosclerosis

Thrombosis

FIGURE 8.3. Scheme for relationships between oxidatively modified LDL, atherosclerosis, and thrombosis.

160 Garry X. Shen

References

1.Castelli WP, Anderson K. A population at risk. Prevalence of high cholesterol levels in hypertensive patients in the Framingham Study. Am J Med 80:23–32, 1986.

2.Brown MS, Goldstein JL. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 6:307–316, 1975.

3.Freeman MW. Scavenger receptors in atherosclerosis. Curr Opin Hematol 4:41–47, 1997.

4.Platt N, Gordon S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol 5:R193–R203, 1998.

5.Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966, 1997.

6.Holvoet P, Collen D. Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J 8:1279–1284, 1994.

7.Relou IA, Hackeng CM, Akkerman JW, Malle E. Low-density lipoprotein and its effect on human blood platelets. Cell Mol Life Sci 60:961–971, 2003.

8.Fischer A, Gutstein DE, Fuster V. Thrombosis and coagulation abnormalities in the acute coronary syndromes. Cardiol Clin 17:283–294, 1999.

9.Arbustini E, Grasso M, Diegoli M, Pucci A, Bramerio M, Ardissino D, Angoli L, de Servi S, Bramucci E, Mussini A, et al. Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study. Am J Cardiol 68:36B–50B, 1991.

10.Bertolet BD, Dinerman J, Hartke R Jr, Conti CR. Unstable angina: relationship of clinical presentation, coronary artery pathology, and clinical outcome. Clin Cardiol 16:116–122, 1993.

11.Kluft C. The fibrinolytic system and thrombotic tendency. Pathophysiol Haemost Thromb 33:425–429, 2003–2004.

12.Krauss RM. Dense low density lipoproteins and coronary artery disease. Am J Cardiol 75:53B–57B, 1995.

13.Schneider WJ. Lipoprotein receptor. In: Vance DE, Vance JE (eds), Biochemistry of Lipids, Lipoproteins and Membranes, 4th edn. Elsevier, Amsterdam, 2002, pp. 553–572.

14.Brown MS, Ho YK, Goldstein JL. The low-density lipoprotein pathway in human fibroblasts: relation between cell surface receptor binding and endocytosis of low-density lipoprotein. Ann N Y Acad Sci 275:244–257, 1976.

15.Brown MS, Goldstein JL. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu Rev Genet 13:259–289, 1979.

16.Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS. The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci U S A 91:4431–4435, 1994.

17.Sparrow CP, Parthasarathy S, Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem 264:2599–2604, 1989.

18.Aviram M. Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 98:1–9, 1993.

19.Tabas I. Nonoxidative modifications of lipoproteins in atherogenesis. Annu Rev Nutr 19:123–139, 1999.

Chapter 8. Oxidatively Modified LDL and Thrombosis

161

20.Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266, 1990.

21.Lyons TJ, Li W, Wojciechowski B, Wells-Knecht MC, Wells-Knecht KJ, Jenkins AJ. Aminoguanidine and the effects of modified LDL on cultured retinal capillary cells. Invest Ophthalmol Vis Sci 41:1176–1180, 2000.

22.Jenkins AJ, Klein RL, Chassereau CN, Hermayer KL, Lopes-Virella MF. LDL from patients with well-controlled IDDM is not more susceptible to in vitro oxidation. Diabetes 45:762–767, 1996.

23.Lyons TJ, Baynes JW, Patrick JS, Colwell JA, Lopes-Virella MF. Glycosylation of low density lipoprotein in patients with type 1 (insulin-dependent) diabetes: correlations with other parameters of glycaemic control. Diabetologia 29:685–689, 1986.

24.Dhaliwal BS, Steinbrecher UP. Scavenger receptors and oxidized low density lipoproteins. Clin Chim Acta 286:191–205, 1999.

25.Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268: 11811–11816, 1993.

26.Nagase M, Hirose S, Sawamura T, Masaki T, Fujita T. Enhanced expression of endothelial oxidized low-density lipoprotein receptor (LOX-1) in hypertensive rats. Biochem Biophys Res Commun 237:496–498, 1997.

27.Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL, Ogawa S, Kuwabara K, Matsumoto M, Stern D. RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45 (Suppl 3):S77–S80, 1996.

28.Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086–1095, 1989.

29.Holvort P. Oxidized LDL and coronary heart disease. Acta Cardiol 59:479–484, 2004.

30.Salonen JT, Yla-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssonen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339:883–887, 1992.

31.Shimada K, Mokuno H, Matsunaga E, Miyazaki T, Sumiyoshi K, Miyauchi K, Daida H. Circulating oxidized low-density lipoprotein is an independent predictor for cardiac event in patients with coronary artery disease. Atherosclerosis 174:343–347, 2004.

32.Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 15:2073–2084, 2001.

33.Hayem G, Nicaise-Roland P, Palazzo E, de Bandt M, Tubach F, Weber M, Meyer O. Anti-oxidized low-density-lipoprotein (OxLDL) antibodies in systemic lupus erythematosus with and without antiphospholipid syndrome. Lupus 10:346–351, 2001.

34.Zhao D, Ogawa H, Wang X, Cameron GS, Baty DE, Dlott JS, Triplett DA. Oxidized low-density lipoprotein and autoimmune antibodies in patients with antiphospholipid syndrome with a history of thrombosis. Am J Clin Pathol 116:760–767, 2001.

35.Kobayashi K, Kishi M, Atsumi T, Bertolaccini ML, Makino H, Sakairi N, Yamamoto I, Yasuda T, Khamashta MA, Hughes GR, Koike T, Voelker DR,

162 Garry X. Shen

Matsuura E. Circulating oxidized LDL forms complexes with beta2-glycopro- tein I: implication as an atherogenic autoantigen. J Lipid Res 44:716–726, 2003.

36.Oida K, Tohda G, Ishii H, Horie S, Kohno M, Okada E, Suzuki J, Nakai T, Miyamori I. Effect of oxidized low density lipoprotein on thrombomodulin expression by THP-1 cells. Thromb Haemost 78:1228–1233, 1997.

37.Kim JA, Tran ND, Berliner JA, Fisher MJ. Minimally oxidized low-density

lipoprotein regulates hemostasis factors of brain capillary endothelial cells. J Neurol Sci 217:135–141, 2004.

38.Weis JR, Pitas RE, Wilson BD, Rodgers GM. Oxidized low-density lipoprotein increases cultured human endothelial cell tissue factor activity and reduces protein C activation. FASEB J 5:2459–2465, 1991.

39.Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296:1880–1882, 2002.

40.Brand K, Banka CL, Mackman N, Terkeltaub RA, Fan ST, Curtiss LK. Oxidized LDL enhances lipopolysaccharide-induced tissue factor expression in human adherent monocytes. Arterioscler Thromb 14:790–797, 1994.

41.Cui MZ, Penn MS, Chisolm GM. Native and oxidized low density lipoprotein induction of tissue factor gene expression in smooth muscle cells is mediated by both Egr-1 and Sp1. J Biol Chem 274:32795–32802, 1999.

42.Ananyeva NM, Kouiavskaia DV, Shima M, Saenko EL. Intrinsic pathway of blood coagulation contributes to thrombogenicity of atherosclerotic plaque. Blood 99:4475–4485, 2002.

43.Horie S, Hiraishi S, Hirata Y, Kazama M, Matsuda J. Oxidized low-density lipoprotein impairs the anti-coagulant function of tissue-factor-pathway inhibitor through oxidative modification by its high association and accelerated degradation in cultured human endothelial cells. Biochem J 352 (part 2): 277–285, 2000.

44.Dardik R, Varon D, Tamarin I, Zivelin A, Salomon O, Shenkman B, Savion N. Homocysteine and oxidized low density lipoprotein enhanced platelet adhesion to endothelial cells under flow conditions: distinct mechanisms of thrombogenic modulation. Thromb Haemost 83:338–344, 2000.

45.Vlasova II. The effect of oxidatively modified low-density lipoproteins on platelet aggregability and membrane fluidity. Platelets 11:406–414, 2000.

46.Mahfouz MM, Kummerow FA. Oxidized low-density lipoprotein (LDL) enhances thromboxane A(2) synthesis by platelets, but lysolecithin as a product of LDL oxidation has an inhibitory effect. Prostaglandins Other Lipid Mediat 62:183–200, 2000.

47.Triau JE, Meydani SN, Schaefer EJ. Oxidized low density lipoprotein stimulates prostacyclin production by adult human vascular endothelial cells. Arteriosclerosis 8:810–818, 1988.

48.Myers DE, Huang WN, Larkins RG. Lipoprotein-induced prostacyclin production in endothelial cells and effects of lipoprotein modification. Am J Physiol 271:C1504–C1511, 1996.

49.Ferretti G, Rabini RA, Bacchetti T, Vignini A, Salvolini E, Ravaglia F, Curatola G, Mazzanti L. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. J Clin Endocrinol Metab 87:2180–2184, 2002.

50.Volf I, Roth A, Cooper J, Moeslinger T, Koller E. Hypochlorite modified LDL are a stronger agonist for platelets than copper oxidized LDL. FEBS Lett 483:155–159, 2000.

Chapter 8. Oxidatively Modified LDL and Thrombosis

163

51.Coleman LG Jr, Polanowska-Grabowska RK, Marcinkiewicz M, Gear AR. LDL oxidized by hypochlorous acid causes irreversible platelet aggregation when combined with low levels of ADP, thrombin, epinephrine, or macrophagederived chemokine (CCL22). Blood 104:380–389, 2004.

52.Korporaal SJ, Gorter G, van Rijn HJ, Akkerman JW. Effect of oxidation on the platelet-activating properties of low-density lipoprotein. Arterioscler Thromb Vasc Biol 25:867–872, 2005.

53.Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL. The cell biology of the plasminogen system. FASEB J 9:939–945, 1995.

54.Shen GX. Vascular cell-derived fibrinolytic regulators and atherothrombotic vascular disorders. Int J Mol Med 1:399–408, 1998.

55.Tremoli E, Camera M, Maderna P, Sironi L, Prati L, Colli S, Piovella F, Bernini F, Corsini A, Mussoni L. Increased synthesis of plasminogen activator inhibitor-1 by cultured human endothelial cells exposed to native and modified LDLs. An LDL receptor-independent phenomenon. Arterioscler Thromb 13:338–346, 1993.

56.Ren S, Man RY, Angel A, Shen GX. Oxidative modification enhances lipopro- tein(a)-induced overproduction of plasminogen activator inhibitor-1 in cultured vascular endothelial cells. Atherosclerosis 128:1–10, 1997.

57.Kugiyama K, Sakamoto T, Misumi I, Sugiyama S, Ohgushi M, Ogawa H, Horiguchi M, Yasue H. Transferable lipids in oxidized low-density lipoprotein stimulate plasminogen activator inhibitor-1 and inhibit tissue-type plasminogen activator release from endothelial cells. Circ Res 73:335–343, 1993.

58.Zhang J, Ren S, Sun D, Shen GX. Influence of glycation on LDL-induced generation of fibrinolytic regulators in vascular endothelial cells. Arterioscler Thromb Vasc Biol 18:1140–1148, 1998.

59.Ren S, Shatadal S, Shen GX. Protein kinase C-beta mediates lipoproteininduced generation of PAI-1 from vascular endothelial cells. Am J Physiol Endocrinol Metab 278:E656–E662, 2000.

60.Ren S, Lee H, Hu L, Lu L, Shen GX. Impact of diabetes-associated lipoproteins on generation of fibrinolytic regulators from vascular endothelial cells. J Clin Endocrinol Metab 87:286–291, 2002.

61.Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 10:1067–1073, 1990.

62.Etingin OR, Hajjar DP, Hajjar KA, Harpel PC, Nachman RL. Lipoprotein (a) regulates plasminogen activator inhibitor-1 expression in endothelial cells. A potential mechanism in thrombogenesis. J Biol Chem 266:2459–2465, 1991.

63.Eriksson P, Nilsson L, Karpe F, Hamsten A. Very-low-density lipoprotein response element in the promoter region of the human plasminogen activator inhibitor-1 gene implicated in the impaired fibrinolysis of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 18:20–26, 1998.

64.Shen G, Zhao R, Lu L, Ma X, Hu L. Oxidized low density lipoprotein induces interaction between a novel response element in plasminogen activator inhibitor- 1 promoter and a nuclear protein from vascular endothelial cells. Atherosclerosis 4/2:185, 2003 (abstract).

65.Blann AD. Assessment of endothelial dysfunction: focus on atherothrombotic disease. Pathophysiol Haemost Thromb 33:256–261, 2003–2004.

66.Blann AD, Burrows G, McCollum CN. Oxidised and native low-density lipoproteins induce the release of von Willebrand factor from human endothelial cells in vitro. Br J Biomed Sci 60:155–160, 2003.

164Garry X. Shen

67.Blann AD, Waite MA. von Willebrand factor and soluble E-selectin in hypertension: influence of treatment and value in predicting the progression of atherosclerosis. Coron Artery Dis 7:143–147, 1996.

68.Hyman AL, Kadowitz PJ. Pulmonary vasodilator activity of prostacyclin (PGI2) in the cat. Circ Res 45:404–409, 1979.

69.Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376, 1980.

70.Jacobs M, Plane F, Bruckdorfer KR. Native and oxidized low-density lipoproteins have different inhibitory effects on endothelium-derived relaxing factor in the rabbit aorta. Br J Pharmacol 100:21–26, 1990.

71.Liu SY, Lu X, Choy S, Dembinski TC, Hatch GM, Mymin D, Shen X, Angel A, Choy PC, Man RY. Alteration of lysophosphatidylcholine content in low density lipoprotein after oxidative modification: relationship to endothelium dependent relaxation. Cardiovasc Res 28:1476–1481, 1994.

72.Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R; International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-medi- ated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39:257–265, 2002.

73.Dignat-George F, Sampol J. Circulating endothelial cells in vascular disorders: new insights into an old concept. Eur J Haematol 65:215–220, 2000.

74.Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 93:2951–2958, 1999.

75.Makin AJ, Blann AD, Chung NA, Silverman SH, Lip GY. Assessment of endothelial damage in atherosclerotic vascular disease by quantification of circulating endothelial cells. Relationship with von Willebrand factor and tissue factor. Eur Heart J 25:371–376, 2004.

76.Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337:1584–1590, 1997.

77.Woywodt A, Schroeder M, Gwinner W, Mengel M, Jaeger M, Schwarz A, Haller H, Haubitz M. Elevated numbers of circulating endothelial cells in renal transplant recipients. Transplantation 76:1–4, 2003.

78.Libby P, Sukhova G, Lee RT, Liao JK. Molecular biology of atherosclerosis. Int J Cardiol 62 (Suppl 2):S23–S29, 1997.

79.Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 102:145–152, 1998.

80.Esmon CT. Coagulation and inflammation. J Endotoxin Res 9:192–198, 2003.

81.Gebuhrer V, Murphy JF, Bordet JC, Reck MP, McGregor JL. Oxidized lowdensity lipoprotein induces the expression of P-selectin (GMP140/PADGEM/ CD62) on human endothelial cells. Biochem J 306 (Pt 1):293–298, 1995.

82.Amberger A, Maczek C, Jurgens G, Michaelis D, Schett G, Trieb K, Eberl T, Jindal S, Xu Q, Wick G. Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2:94–103, 1997.

83.Wang GP, Deng ZD, Ni J, Qu ZL. Oxidized low density lipoprotein and very low density lipoprotein enhance expression of monocyte chemoattractant protein-1 in rabbit peritoneal exudate macrophages. Atherosclerosis 133:31–36, 1997.

Chapter 8. Oxidatively Modified LDL and Thrombosis

165

84.Jovinge S, Ares MP, Kallin B, Nilsson J. Human monocytes/macrophages release TNF-alpha in response to Ox-LDL. Arterioscler Thromb Vasc Biol 16:1573–1579, 1996.

85.Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276:11199–11203, 2001.

86.Morano KA, Thiele DJ. Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 7:271–282, 1999.

87.Wojta J, Holzer M, Hufnagl P, Christ G, Hoover RL, Binder BR. Hyperthermia stimulates plasminogen activator inhibitor type 1 expression in human umbilical vein endothelial cells in vitro. Am J Pathol 139:911–919, 1991.

88.Zhu W, Roma P, Pellegatta F, Catapano AL. Oxidized-LDL induce the expression of heat shock protein 70 in human endothelial cells. Biochem Biophys Res Commun 200:389–394, 1994.

89.Yamamoto K, Takeshita K, Shimokawa T, Yi H, Isobe K, Loskutoff DJ, Saito H. Plasminogen activator inhibitor-1 is a major stress-regulated gene: implications for stress-induced thrombosis in aged individuals. Proc Natl Acad Sci U S A 99:890–895, 2002.

90.Petrauskiene V, Falk M, Waernbaum I, Norberg M, Eriksson JW. The risk of venous thromboembolism is markedly elevated in patients with diabetes. Diabetologia Mar 19 (Epub), 2005.

91.Moreno PR, Fuster V. New aspects in the pathogenesis of diabetic atherothrombosis. J Am Coll Cardiol 44:2293–2300, 2004.

92.Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complications 15:44–54, 2001.

93.Petersen HD, Gormsen J. Platelet aggregation in diabetes mellitus. Acta Med Scand 203:125–130, 1978.

94.Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, Lehtimaki T, Ronnemaa T, Viikari J, Raitakari OT. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation 109:1750–1755, 2004.

95.Zhao R, Shen GX. Functional modulation of antioxidant enzymes in vascular endothelial cells by glycated LDL. Atherosclerosis 179:277–284, 2005.

96.Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall AR. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113:764–773, 2004.

97.Witiak DT, Kuwano E, Feller DR, Baldwin JR, Newman HA, Sankrappa SK. Synthesis and antilipidemic properties of cis-7-chloro-3a, 8b-dihydro-3a- methylfuro[3,4-b]benzofuran-3(1H)-one, a tricyclic clofibrate related lactone having a structural resemblance to mevalonolactone. J Med Chem 19:1214–1220, 1976.

98.Cheung BM, Lauder IJ, Lau CP, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol 57:640–651, 2004.

99.Corsini, A. The safety of HMG-CoA reductase inhibitors in special populations at high cardiovascular risk. Cardiovasc Drugs Ther 17:265–285, 2003.

100.Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 109:III39–43, 2004.

101.Vasankari T, Ahotupa M, Toikka J, Mikkola J, Irjala K, Pasanen P, Neuvonen K, Raitakari O, Viikari J. Oxidized LDL and thickness of carotid intima-media

166 Garry X. Shen

are associated with coronary atherosclerosis in middle-aged men: lower levels of oxidized LDL with statin therapy. Atherosclerosis 155:403–412, 2001.

102.Ferro D, Basili S, Alessandri C, Mantovani B, Cordova C, Violi F. Simvastatin reduces monocyte-tissue-factor expression type IIa hypercholesterolaemia. Lancet 350:1222, 1997.

103.Davignon J, Laaksonen R. Low-density lipoprotein-independent effects of statins. Curr Opin Lipidol 10:543–559, 1999.

104.Balk EM, Lau J, Goudas LC, Jordan HS, Kupelnick B, Kim LU, Karas RH. Effects of statins on nonlipid serum markers associated with cardiovascular disease: a systematic review. Ann Intern Med 139:670–682, 2003.

105.van Nieuw Amerongen GP, Vermeer MA, Negre-Aminou P, Lankelma J, Emeis JJ, van Hinsbergh VW. Simvastatin improves disturbed endothelial barrier function. Circulation 102:2803–2809, 2000.

106.Ludwig S, Dharmalingam S, Erickson-Nesmith S, Ren S, Ma G, Zhu F, Zhao R, Fenton II JW, Ofosu F, te Velthuis H, Van Mierlo G, Shen GX. Impact of simvastatin on hemostatic and fibrinolytic regulators in type 2 diabetes mellitus. Diabet Res Clin Prac, 70: 110–118, 2005.

107.Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol 21:1712–1719, 2001.

108.Comparato C, Altana C, Bellosta S, Baetta R, Paoletti R, Corsini A. Clinically relevant pleiotropic effects of statins: drug properties or effects of profound cholesterol reduction? Nutr Metab Cardiovasc Dis 11:328–343, 2001.

109.Moghadasian MH. A safety look at currently available statins. Expert Opin Drug Saf 1:269–274, 2002.

110.O’Keefe JH, Lurk JT, Kahatapitiya RC, Haskin JA. The renin–angiotensin– aldosterone system as a target in coronary disease. Curr Atheroscler Rep 5:124–130, 2003.

111.McFarlane SI, Kumar A, Sowers JR. Mechanisms by which angiotensinconverting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol 91:30H–37H, 2003.

112.Zurbano MJ, Anguera I, Heras M, Roig E, Lozano M, Sanz G, Escolar G. Captopril administration reduces thrombus formation and surface expression of platelet glycoprotein IIb/IIa in early postmyocardial infarction stage. Arterioscler Thromb Vasc Biol 19:1791–1795, 1999.

113.Vaughan DE, Rouleau JL, Ridker PM, Arnold JM, Menapace FJ, Pfeffer MA. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. HEART Study Investigators. Circulation 96:442–447, 1997.

114.Soejima H, Ogawa H, Yasue H, Kaikita K, Takazoe K, Nishiyama K, Misumi K, Miyamoto S, Yoshimura M, Kugiyama K, Nakamura S, Tsuji I. Angiotensinconverting enzyme inhibition reduces monocyte chemoattractant protein-1 and tissue factor levels in patients with myocardial infarction. J Am Coll Cardiol 34:983–988, 1999.

115.Li P, Fukuhara M, Diz DI, Ferrario CM, Brosnihan KB. Novel angiotensin II AT(1) receptor antagonist irbesartan prevents thromboxane A(2)-induced vaso-

constriction in canine coronary arteries and human platelet aggregation. J Pharmacol Exp Ther 292:238–246, 2000.

116.Lopez-Farre A, Sanchez de Miguel L, Monton M, Jimenez A, Lopez-Bloya A, Gomez J, Nunez A, Rico L, Casado S. Angiotensin II AT(1) receptor antagonists and platelet activation. Nephrol Dial Transplant 16:45–49, 2001.

Chapter 8. Oxidatively Modified LDL and Thrombosis

167

117.Rachmani R, Lidar M, Brosh D, Levi Z, Ravid M. Oxidation of low-density lipoprotein in normotensive type 2 diabetic patients. Comparative effects of enalapril versus nifedipine: a randomized cross-over over study. Diabetes Res Clin Pract 48:139–145, 2000.

118.de Nigris F, D’Armiento FP, Somma P, Casini A, Andreini I, Sarlo F, Mansueto G, De Rosa G, Bonaduce D, Condorelli M, Napoli C. Chronic treatment with sulfhydryl angiotensin-converting enzyme inhibitors reduce susceptibility of plasma LDL to in vitro oxidation, formation of oxidation-specific epitopes in the arterial wall, and atherogenesis in apolipoprotein E knockout mice. Int J Cardiol 81:107–115, 2001.

119.Napoli C, Cicala C, D’Armiento FP, Roviezzo F, Somma P, de Nigris F, Zuliani P, Bucci M, Aleotti L, Casini A, Franconi F, Cirino G. Beneficial effects of ACEinhibition with zofenopril on plaque formation and low-density lipoprotein oxidation in watanabe heritable hyperlipidemic rabbits. Gen Pharmacol 33:467–477, 1999.

120.Rachmani R, Levi Z, Zadok BS, Ravid M. Losartan and lercanidipine attenuate low-density lipoprotein oxidation in patients with hypertension and type 2 diabetes mellitus: a randomized, prospective crossover study. Clin Pharmacol Ther 72:302–307, 2002.

121.Hayek T, Attias J, Coleman R, Brodsky S, Smith J, Breslow JL, Keidar S. The angiotensin-converting enzyme inhibitor, fosinopril, and the angiotensin II receptor antagonist, losartan, inhibit LDL oxidation and attenuate atherosclerosis independent of lowering blood pressure in apolipoprotein E deficient mice. Cardiovasc Res 44:579–587, 1999.

122.Strawn WB, Chappell MC, Dean RH, Kivlighn S, Ferrario CM. Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation 101:1586–1593, 2000.

Соседние файлы в предмете Биохимия