Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биохимия атеросклероза

.pdf
Скачиваний:
47
Добавлен:
20.06.2014
Размер:
4.45 Mб
Скачать

230 Rita Kohen Avramoglu et al.

coronary heart disease events and response to simvastatin therapy in 4S. Circulation 104: 3046–3051, 2001.

30.Koskinen P, Manttari M, Manninen V, Huttunen JK, Heinonen OP, Frick MH: Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study. Diabetes Care 15: 820–825, 1992.

31.Robins SJ: Targeting low high-density lipoprotein cholesterol for therapy: lessons from the Veterans Affairs High-density Lipoprotein Intervention Trial. Am J Cardiol 88: 19N–23N, 2001.

32.Robins SJ, Rubins HB, Faas FH, Schaefer EJ, Elam MB, Anderson JW, Collins

D:Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 26: 1513–1517, 2003.

33.Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 357: 905–910, 2001.

34.Forster T: [Milestone in the treatment of diabetic dyslipidemia: the DAIS Study]. Orv Hetil 142: 1588–1589, 2001.

35.Steiner G: The Diabetes Atherosclerosis Intervention Study (DAIS): a study conducted in cooperation with the World Health Organization. The DAIS Project Group. Diabetologia 39: 1655–1661, 1996.

36.Florkowski CM: Management of co-existing diabetes mellitus and dyslipidemia: defining the role of thiazolidinediones. Am J Cardiovasc Drugs 2: 15–21, 2002.

37.Olansky L, Marchetti A, Lau H: Multicenter retrospective assessment of thiazolidinedione monotherapy and combination therapy in patients with type 2 diabetes: comparative subgroup analyses of glycemic control and blood lipid levels. Clin Ther 25 (Suppl B): B64–B80, 2003.

38.Verges B: Clinical interest of PPARs ligands. Diabetes Metab 30: 7–12, 2004.

39.Shafrir E: Animal models of non-insulin-dependent diabetes. Diabetes Metab Rev 8: 179–208, 1992.

40.Shafrir E, Ziv E, Mosthaf L: Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892: 223–246, 1999.

41.Collier G, Walder K, De Silva A, Tenne-Brown J, Sanigorski A, Segal D, Kantham L, Augert G: New approaches to gene discovery with animal models of obesity and diabetes. Ann N Y Acad Sci 967: 403–413, 2002.

42.Kadowaki T: Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 106: 459–465, 2000.

43.Kozak LP, Rossmeisl M: Adiposity and the development of diabetes in mouse genetic models. Ann N Y Acad Sci 967: 80–87, 2002.

44.Shafrir E, Ziv E: Cellular mechanism of nutritionally induced insulin resistance: the desert rodent Psammomys obesus and other animals in which insulin resistance leads to detrimental outcome. J Basic Clin Physiol Pharmacol 9: 347–385, 1998.

45.Silver DL, Jiang XC, Arai T, Bruce C, Tall AR: Receptors and lipid transfer proteins in HDL metabolism. Ann N Y Acad Sci 902: 103–111, 2000.

46.Park J, Rho HK, Kim KH, Choe SS, Lee YS, Kim JB: Overexpression of glu- cose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol Cell Biol 25: 5146–5157, 2005.

Chapter 11. Lipoprotein Metabolism in Insulin-Resistant States

231

47.Wiegman CH, Bandsma RH, Ouwens M, van der Sluijs FH, Havinga R, Boer T, Reijngoud DJ, Romijn JA, Kuipers F: Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis but is less sensitive to the suppressive effects of insulin. Diabetes 52: 1081–1089, 2003.

48.Muurling M, Mensink RP, Pijl H, Romijn JA, Havekes LM, Voshol PJ: Rosiglitazone improves muscle insulin sensitivity, irrespective of increased triglyceride content, in ob/ob mice. Metabolism 52: 1078–1083, 2003.

49.Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ: Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 111: 737–747, 2003.

50.Liao W, Angelin B, Rudling M: Lipoprotein metabolism in the fat Zucker rat: reduced basal expression but normal regulation of hepatic low density lipoprotein receptors. Endocrinology 138: 3276–3282, 1997.

51.Mathe D: Dyslipidemia and diabetes: animal models. Diabetes Metab 21: 106–111, 1995.

52.Park SH, Marso SP, Zhou Z, Foroudi F, Topol EJ, Lincoff AM: Neointimal hyperplasia after arterial injury is increased in a rat model of non-insulin-dependent diabetes mellitus. Circulation 104: 815–819, 2001.

53.Blay M, Peinado-Onsurbe J, Julve J, Rodriguez V, Fernandez-Lopez JA, Remesar X, Alemany M: Anomalous lipoproteins in obese Zucker rats. Diabetes Obes Metab 3: 259–270, 2001.

54.Phillips C, Owens D, Collins P, Tomkin GH: Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly? Atherosclerosis 160: 355–360, 2002.

55.Sparks JD, Shaw WN, Corsetti JP, Bolognino M, Pesek JF, Sparks CE: Insulintreated Zucker diabetic fatty rats retain the hypertriglyceridemia associated with obesity. Metabolism 49: 1424–1430, 2000.

56.Kalderon B, Mayorek N, Ben Yaacov L, Bar-Tana J: Adipose tissue sensitization to insulin induced by troglitazone and MEDICA 16 in obese Zucker rats in vivo. Am J Physiol Endocrinol Metab 284: E795–E803, 2003.

57.Oakes ND, Thalen PG, Jacinto SM, Ljung B: Thiazolidinediones increase plasmaadipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability. Diabetes 50: 1158–1165, 2001.

58.Noshiro O, Hirayama R, Shimaya A, Yoneta T, Niigata K, Shikama H: Role of plasma insulin concentration in regulating glucose and lipid metabolism in lean and obese Zucker rats. Int J Obes Relat Metab Disord 21: 115–121, 1997.

59.Russell JC, Koeslag DG, Amy RM, Dolphin PJ: Plasma lipid secretion and clearance in hyperlipidemic JCR:LA-corpulent rats. Arteriosclerosis 9: 869–876, 1989.

60.Russell JC, Graham S, Hameed M: Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 43: 538–543, 1994.

61.Russell JC, Shillabeer G, Bar-Tana J, Lau DC, Richardson M, Wenzel LM, Graham SE, Dolphin PJ: Development of insulin resistance in the JCR: LA-cp rat: role of triacylglycerols and effects of MEDICA 16. Diabetes 47: 770–778, 1998.

62.Dolphin PJ, Stewart B, Amy RM, Russell JC: Serum lipids and lipoproteins in the atherosclerosis prone LA/N corpulent rat. Biochim Biophys Acta 919: 140–148, 1987.

232Rita Kohen Avramoglu et al.

63.Zhang B, Saku K, Hirata K, Liu R, Tateishi K, Yamamoto K, Arakawa K: Insulin resistance observed in WHHL rabbits. Atherosclerosis 91: 277–278, 1991.

64.Zhang B, Saku K, Arakawa K: Quantification of the effects of troglitazone on insulin sensitivity and beta-cell function in Watanabe heritable hyperlipidemic rabbits: a minimal model analysis. Metabolism 46: 273–281, 1997.

65.Zhang B, Shiomi M, Tanaka H, Mei J, Fan P, Tsujita Y, Horikoshi H, Saku K: Effects of high-dose troglitazone on insulin sensitivity and beta-cell function in Watanabe heritable hyperlipidemic rabbits. Eur J Drug Metab Pharmacokinet

26:185–192, 2001.

66.Shiomi M, Ito T, Tsukada T, Tsujita Y, Horikoshi H: Combination treatment with troglitazone, an insulin action enhancer, and pravastatin, an inhibitor of HMG-CoA reductase, shows a synergistic effect on atherosclerosis of WHHL rabbits. Atherosclerosis 142: 345–353, 1999.

67.Saku K, Zhang B, Ohta T, Arakawa K: Troglitazone lowers blood pressure and enhances insulin sensitivity in Watanabe heritable hyperlipidemic rabbits. Am J Hypertens 10: 1027–1033, 1997.

68.Koike T, Liang J, Wang X, Ichikawa T, Shiomi M, Liu G, Sun H, Kitajima S, Morimoto M, Watanabe T, Yamada N, Fan J: Overexpression of lipoprotein lipase in transgenic Watanabe heritable hyperlipidemic rabbits improves hyperlipidemia and obesity. J Biol Chem 279: 7521–7529, 2004.

69.Dong Q, Ginsberg HN, Erlanger BF: Overexpression of the A1 adenosine receptor in adipose tissue protects mice from obesity-related insulin resistance. Diabetes Obes Metab 3: 360–366, 2001.

70.Green A: Catecholamines inhibit insulin-stimulated glucose transport in adipocytes, in the presence of adenosine deaminase. FEBS Lett 152: 261–264, 1983.

71.Schwabe U, Schonhofer PS, Ebert R: Facilitation by adenosine of the action of insulin on the accumulation of adenosine 3:5-monophosphate, lipolysis, and glucose oxidation in isolated fat cells. Eur J Biochem 46: 537–545, 1974.

72.Smith U, Kuroda M, Simpson IA: Counter-regulation of insulin-stimulated glucose transport by catecholamines in the isolated rat adipose cell. J Biol Chem

259:8758–8763, 1984.

73.Siri P, Candela N, Zhang YL, Ko C, Eusufzai S, Ginsberg HN, Huang LS: Post-transcriptional stimulation of the assembly and secretion of triglyceriderich apolipoprotein B lipoproteins in a mouse with selective deficiency of brown adipose tissue, obesity, and insulin resistance. J Biol Chem 276: 46064–46072, 2001.

74.Barnett M, Collier GR, Collier FM, Zimmet P, O’Dea K: A cross-sectional and short-term longitudinal characterisation of NIDDM in Psammomys obesus. Diabetologia 37: 671–676, 1994.

75.Collier GR, Walder K, Lewandowski P, Sanigorski A, Zimmet P: Leptin and the development of obesity and diabetes in Psammomys obesus. Obes Res 5: 455–458, 1997.

76.Habito RC, Barnett M, Yamamoto A, Cameron-Smith D, O’Dea K, Zimmet P, Collier GR: Basal glucose turnover in Psammomys obesus. An animal model of type 2 (non-insulin-dependent) diabetes mellitus. Acta Diabetol

32:187–192, 1995.

77.Walder KR, Fahey RP, Morton GJ, Zimmet PZ, Collier GR: Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Int J Exp Diabetes Res 1: 177–184, 2000.

Chapter 11. Lipoprotein Metabolism in Insulin-Resistant States

233

78.Kanety H, Moshe S, Shafrir E, Lunenfeld B, Karasik A: Hyperinsulinemia induces a reversible impairment in insulin receptor function leading to diabetes in the sand rat model of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 91: 1853–1857, 1994.

79.Ziv E, Kalman R, Hershkop K, Barash V, Shafrir E, Bar-On H: Insulin resistance in the NIDDM model Psammomys obesus in the normoglycaemic, normoinsulinaemic state. Diabetologia 39: 1269–1275, 1996.

80.Walder K, Lewandowski P, Morton G, Sanigorski A, De Silva A, Zimmet P, Collier GR: Leptin resistance in a polygenic, hyperleptinemic animal model of obesity and NIDDM: Psammomys obesus. Int J Obes Relat Metab Disord 23: 83–89, 1999.

81.Zoltowska M, Ziv E, Delvin E, Stan S, Bar-On H, Kalman R, Levy E: Circulating lipoproteins and hepatic sterol metabolism in Psammomys obesus prone to obesity, hyperglycemia and hyperinsulinemia. Atherosclerosis 157: 85–96, 2001.

82.Ikeda Y, Olsen GS, Ziv E, Hansen LL, Busch AK, Hansen BF, Shafrir E, Mosthaf-Seedorf L: Cellular mechanism of nutritionally induced insulin resistance in Psammomys obesus: overexpression of protein kinase Cepsilon in skeletal muscle precedes the onset of hyperinsulinemia and hyperglycemia. Diabetes 50: 584–592, 2001.

83.Collier GR, McMillan JS, Windmill K, Walder K, Tenne-Brown J, De Silva A, Trevaskis J, Jones S, Morton GJ, Lee S, Augert G, Civitarese A, Zimmet PZ: Beacon: a novel gene involved in the regulation of energy balance. Diabetes 49: 1766–1771, 2000.

84.Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K: Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem 275: 8416–8425, 2000.

85.Hoang VQ, Botham KM, Benson GM, Eldredge EE, Jackson B, Pearce N, Suckling KE: Bile acid synthesis in hamster hepatocytes in primary culture: sources of cholesterol and comparison with other species. Biochim Biophys Acta 1210: 73–80, 1993.

86.Jackson B, Gee AN, Martinez-Cayuela M, Suckling KE: The effects of feeding a saturated fat-rich diet on enzymes of cholesterol metabolism in the liver, intestine and aorta of the hamster. Biochim Biophys Acta 1045: 21–28, 1990.

87.Nistor A, Bulla A, Filip DA, Radu A: The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68: 159–173, 1987.

88.Sullivan MP, Cerda JJ, Robbins FL, Burgin CW, Beatty RJ: The gerbil, hamster, and guinea pig as rodent models for hyperlipidemia. Lab Anim Sci 43: 575–578, 1993.

89.Arbeeny CM, Meyers DS, Bergquist KE, Gregg RE: Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster. J Lipid Res 33: 843–851, 1992.

90.Liu GL, Fan LM, Redinger RN: The association of hepatic apoprotein and lipid metabolism in hamsters and rats. Comp Biochem Physiol A 99: 223–228, 1991.

91.Mangaloglu L, Cheung RC, Van Iderstine SC, Taghibiglou C, Pontrelli L, Adeli K: Treatment with atorvastatin ameliorates hepatic very-low-density lipoprotein

234 Rita Kohen Avramoglu et al.

overproduction in an animal model of insulin resistance, the fructose-fed Syrian golden hamster: evidence that reduced hypertriglyceridemia is accompanied by improved hepatic insulin sensitivity. Metabolism 51: 409–418, 2002.

92.Taghibiglou C, Rudy D, Van Iderstine SC, Aiton A, Cavallo D, Cheung R, Adeli

K:Intracellular mechanisms regulating apoB-containing lipoprotein assembly and secretion in primary hamster hepatocytes. J Lipid Res 41: 499–513, 2000.

93.Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC, Le Tien H, Fantus IG, Lewis GF, Adeli K: Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J Biol Chem 277: 793–803, 2002.

94.Kasuga M, Karlsson FA, Kahn CR: Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215: 185–187, 1982.

95.Olefsky JM: The insulin receptor. A multifunctional protein. Diabetes 39: 1009– 1016, 1990.

96.Combettes-Souverain M, Issad T: Molecular basis of insulin action. Diabetes Metab 24: 477–489, 1998.

97.Fantin VR, Sparling JD, Slot JW, Keller SR, Lienhard GE, Lavan BE: Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells. J Biol Chem 273: 10726–10732, 1998.

98.Lavan BE, Lienhard GE: The insulin-elicited 60-kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J Biol Chem 268: 5921–5928, 1993.

99.Ogawa W, Matozaki T, Kasuga M: Role of binding proteins to IRS-1 in insulin signalling. Mol Cell Biochem 182: 13–22, 1998.

100.White MF: The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Recent Prog Horm Res 53: 119–138, 1998.

101.Fischer EH, Charbonneau H, Tonks NK: Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253: 401–406, 1991.

102.Backer JM, Myers MG Jr, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B, Skolnik EY, Schlessinger J: Phosphatidylinositol 3-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11: 3469–3479, 1992.

103.Lavan BE, Kuhne MR, Garner CW, Anderson D, Reedijk M, Pawson T, Lienhard GE: The association of insulin-elicited phosphotyrosine proteins with src homology 2 domains. J Biol Chem 267: 11631–11636, 1992.

104.Lee CH, Li W, Nishimura R, Zhou M, Batzer AG, Myers MG Jr, White MF, Schlessinger J, Skolnik EY: Nck associates with the SH2 domain-docking protein IRS-1 in insulin-stimulated cells. Proc Natl Acad Sci U S A 90: 11713–11717, 1993.

105.Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R, Myers MJ Jr, Backer JM, Ullrich A, White MF: The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J 12: 1929–1936, 1993.

106.Czech MP, Corvera S: Signaling mechanisms that regulate glucose transport. J Biol Chem 274: 1865–1868, 1999.

107.Virkamaki A, Ueki K, Kahn CR: Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103: 931–943, 1999.

Chapter 11. Lipoprotein Metabolism in Insulin-Resistant States

235

108.Bjornholm M, Kawano Y, Lehtihet M, Zierath JR: Insulin receptor substrate- 1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 46: 524–527, 1997.

109.Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL: Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95: 2195–2204, 1995.

110.Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U: Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non- insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 94: 4171–4175, 1997.

111.Zierath JR, Krook A, Wallberg-Henriksson H: Insulin action in skeletal muscle from patients with NIDDM. Mol Cell Biochem 182: 153–160, 1998.

112.Caro JF, Ittoop O, Pories WJ, Meelheim D, Flickinger EG, Thomas F, Jenquin M, Silverman JF, Khazanie PG, Sinha MK: Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. Insulin action and binding in isolated hepatocytes, insulin receptor structure, and kinase activity. J Clin Invest 78: 249–258, 1986.

113.Olefsky JM: Decreased insulin binding to adipocytes and circulating monocytes from obese subjects. J Clin Invest 57: 1165–1172, 1976.

114.Caro JF, Sinha MK, Raju SM, Ittoop O, Pories WJ, Flickinger EG, Meelheim D, Dohm GL: Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 79: 1330–1337, 1987.

115.Anai M, Funaki M, Ogihara T, Terasaki J, Inukai K, Katagiri H, Fukushima Y, Yazaki Y, Kikuchi M, Oka Y, Asano T: Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty rats. Diabetes 47: 13–23, 1998.

116.Friedman JE, Ishizuka T, Liu S, Farrell CJ, Bedol D, Koletsky RJ, Kaung HL, Ernsberger P: Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am J Physiol 273: E1014–E1023, 1997.

117.Hayakawa T, Shiraki T, Morimoto T, Shii K, Ikeda H: Pioglitazone improves insulin signaling defects in skeletal muscle from Wistar fatty (fa/fa) rats. Biochem Biophys Res Commun 223: 439–444, 1996.

118.Hurrell DG, Pedersen O, Kahn CR: Alterations in the hepatic insulin receptor kinase in genetic and acquired obesity in rats. Endocrinology 125: 2454–2462, 1989.

119.Kerouz NJ, Horsch D, Pons S, Kahn CR: Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest 100: 3164–3172, 1997.

120.Folli F, Saad MJ, Backer JM, Kahn CR: Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest 92: 1787–1794, 1993.

121.Heydrick SJ, Gautier N, Olichon-Berthe C, Van Obberghen E, Marchand-Brustel Y: Early alteration of insulin stimulation of PI 3-kinase in muscle and adipocyte from gold thioglucose obese mice. Am J Physiol 268: E604–E612, 1995.

122.Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, Jose PA, Taylor SI, Westphal H: Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12: 106–109, 1996.

236 Rita Kohen Avramoglu et al.

123.Araki E, Lipes MA, Patti ME, Bruning JC, Haag B III, Johnson RS, Kahn CR: Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372: 186–190, 1994.

124.Bruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR: Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88: 561–572, 1997.

125.Joshi RL, Lamothe B, Cordonnier N, Mesbah K, Monthioux E, Jami J, Bucchini D: Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J 15: 1542–1547, 1996.

126.Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S: Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372: 182–186, 1994.

127.Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF: Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900–904, 1998.

128.Fry MJ: Structure, regulation and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1226: 237–268, 1994.

129.Srivastava AK, Pandey SK: Potential mechanism(s) involved in the regulation of glycogen synthesis by insulin. Mol Cell Biochem 182: 135–141, 1998.

130.Ballotti R, Tartare S, Van Obberghen E: [The insulin receptor: mechanism of activation and message transmission]. Pathol Biol (Paris) 40: 754–762, 1992.

131.Liu R, Bai H, Liu BW: [Signal transduction of insulin receptor]. Sheng Li Ke Xue Jin Zhan 32: 254–256, 2001.

132.Marchand-Brustel Y: Molecular mechanisms of insulin action in normal and insulin-resistant states. Exp Clin Endocrinol Diabetes 107: 126–132, 1999.

133.Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352: 73–77, 1991.

134.Qiao LY, Goldberg JL, Russell JC, Sun XJ: Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem 274: 10625–10632, 1999.

135.De Fea K, Roth RA: Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 272: 31400–31406, 1997.

136.Aguirre V, Uchida T, Yenush L, Davis R, White MF: The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor sub- strate-1 and phosphorylation of Ser(307). J Biol Chem 275: 9047–9054, 2000.

137.Desbois-Mouthon C, Blivet-Van Eggelpoel MJ, Auclair M, Cherqui G, Capeau J, Caron M: Insulin differentially regulates SAPKs/JNKs and ERKs in CHO cells overexpressing human insulin receptors. Biochem Biophys Res Commun 243: 765–770, 1998.

138.Kayali AG, Austin DA, Webster NJ: Stimulation of MAPK cascades by insulin and osmotic shock: lack of an involvement of p38 mitogen-activated protein kinase in glucose transport in 3T3-L1 adipocytes. Diabetes 49: 1783–1793, 2000.

139.Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A: An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 myotubes. J Biol Chem 274: 10071–10078, 1999.

140.Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ: Insulin resistance differentially affects

Chapter 11. Lipoprotein Metabolism in Insulin-Resistant States

237

the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105: 311–320, 2000.

141.Krook A, Bjornholm M, Galuska D, Jiang XJ, Fahlman R, Myers MG Jr, Wallberg-Henriksson H, Zierath JR: Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes

49:284–292, 2000.

142.Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Abe M, Shojima N, Fukushima Y, Kikuchi M, Oka Y, Asano T: Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol Endocrinol 17: 487–497, 2003.

143.Yamamoto Y, Yoshimasa Y, Koh M, Suga J, Masuzaki H, Ogawa Y, Hosoda K, Nishimura H, Watanabe Y, Inoue G, Nakao K: Constitutively active mitogenactivated protein kinase increases GLUT1 expression and recruits both GLUT1 and GLUT4 at the cell surface in 3T3-L1 adipocytes. Diabetes 49: 332–339, 2000.

144.Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE: Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 14: 1557–1569, 2000.

145.Goldstein BJ: Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor 3: 1–15, 1993.

146.Hashimoto N, Zhang WR, Goldstein BJ: Insulin receptor and epidermal growth factor receptor dephosphorylation by three major rat liver protein-tyrosine phosphatases expressed in a recombinant bacterial system. Biochem J 284 (Pt 2): 569–576, 1992.

147.Lammers R, Bossenmaier B, Cool DE, Tonks NK, Schlessinger J, Fischer EH, Ullrich A: Differential activities of protein tyrosine phosphatases in intact cells. J Biol Chem 268: 22456–22462, 1993.

148.Tonks NK, Diltz CD, Fischer EH: Characterization of the major protein- tyrosine-phosphatases of human placenta. J Biol Chem 263: 6731–6737, 1988.

149.Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Burn P, Quon MJ: Protein-tyrosine phosphatases PTP1B and syp are modulators of insulinstimulated translocation of GLUT4 in transfected rat adipose cells. J Biol Chem

272:8026–8031, 1997.

150.Maegawa H, Ide R, Hasegawa M, Ugi S, Egawa K, Iwanishi M, Kikkawa R, Shigeta Y, Kashiwagi A: Thiazolidine derivatives ameliorate high glucoseinduced insulin resistance via the normalization of protein-tyrosine phosphatase activities. J Biol Chem 270: 7724–7730, 1995.

151.Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP: Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283: 1544–1548, 1999.

152.Havel PJ: Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol

13:51–59, 2002.

153.Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, Tremblay ML: Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell 2: 497–503, 2002.

154.Kaszubska W, Falls HD, Schaefer VG, Haasch D, Frost L, Hessler P, Kroeger PE, White DW, Jirousek MR, Trevillyan JM: Protein tyrosine phosphatase 1B

238 Rita Kohen Avramoglu et al.

negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol 195: 109–118, 2002.

155.Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK: TYK2 and JAK2 are substrates of proteintyrosine phosphatase 1B. J Biol Chem 276: 47771–47774, 2001.

156.Yu YH, Ginsberg HN: Adipocyte signaling and lipid homeostasis: sequelae of insulin-resistant adipose tissue. Circ Res 96: 1042–1052, 2005.

157.Manco M, Calvani M, Mingrone G: Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes Metab 6: 402–413, 2004.

158.Smith AG, Muscat GE: Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 37: 2047–2063, 2005.

159.Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA: Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab 287: E120–E127, 2004.

160.Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI: Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103: 253–259, 1999.

161.Shulman GI: Cellular mechanisms of insulin resistance in humans. Am J Cardiol 84: 3J–10J, 1999.

162.Hazel M, Cooksey RC, Jones D, Parker G, Neidigh JL, Witherbee B, Gulve EA, McClain DA: Activation of the hexosamine signaling pathway in adipose tissue results in decreased serum adiponectin and skeletal muscle insulin resistance. Endocrinology 145: 2118–2128, 2004.

163.Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8: 1288–1295, 2002.

164.Koteish A, Diehl AM: Animal models of steatosis. Semin Liver Dis 21: 89–104, 2001.

165.Faraj M, Lu HL, Cianflone K: Diabetes, lipids, and adipocyte secretagogues. Biochem Cell Biol 82: 170–190, 2004.

166.Frayn KN: Obesity and metabolic disease: is adipose tissue the culprit? Proc Nutr Soc 64: 7–13, 2005.

167.Ballantyne GH, Gumbs A, Modlin IM: Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of the adipocytokines, leptin, adiponectin and resistin. Obes Surg 15: 692–699, 2005.

168.Merl V, Peters A, Oltmanns KM, Kern W, Born J, Fehm HL, Schultes B: Serum adiponectin concentrations during a 72-hour fast in overand normal-weight humans. Int J Obes Relat Metab Disord 29: 998–1001, 2005.

169.Singhal A, Jamieson N, Fewtrell M, Deanfield J, Lucas A, Sattar N: Adiponectin predicts insulin resistance but not endothelial function in young healthy adolescents. J Clin Endocrinol Metab 90: 4615–4621, 2005.

170.Jan V, Cervera P, Maachi M, Baudrimont M, Kim M, Vidal H, Girard PM, Levan P, Rozenbaum W, Lombes A, Capeau J, Bastard JP: Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological

Chapter 11. Lipoprotein Metabolism in Insulin-Resistant States

239

changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther 9: 555–564, 2004.

171.Kopp HP, Krzyzanowska K, Mohlig M, Spranger J, Pfeiffer AF, Schernthaner

G:Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes Relat Metab Disord 29: 766–771, 2005.

172.Shetty GK, Economides PA, Horton ES, Mantzoros CS, Veves A: Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 27: 2450–2457, 2004.

173.Reinehr T, Roth C, Menke T, Andler W: Adiponectin before and after weight loss in obese children. J Clin Endocrinol Metab 89: 3790–3794, 2004.

174.Asensio C, Cettour-Rose P, Theander-Carrillo C, Rohner-Jeanrenaud F, Muzzin

P:Changes in glycemia by leptin administration or high-fat feeding in rodent models of obesity/type 2 diabetes suggest a link between resistin expression and control of glucose homeostasis. Endocrinology 145: 2206–2213, 2004.

175.Jung HS, Youn BS, Cho YM, Yu KY, Park HJ, Shin CS, Kim SY, Lee HK, Park KS: The effects of rosiglitazone and metformin on the plasma concentrations of resistin in patients with type 2 diabetes mellitus. Metabolism 54: 314–320, 2005.

176.Rajala MW, Qi Y, Patel HR, Takahashi N, Banerjee R, Pajvani UB, Sinha MK, Gingerich RL, Scherer PE, Ahima RS: Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53: 1671–1679, 2004.

177.Vozarova de Court, Degawa-Yamauchi M, Considine RV, Tataranni PA: High serum resistin is associated with an increase in adiposity but not a worsening of insulin resistance in Pima Indians. Diabetes 53: 1279–1284, 2004.

178.Ortenblad N, Mogensen M, Petersen I, Hojlund K, Levin K, Sahlin K, BeckNielsen H, Gaster M: Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta 1741: 206–214, 2005.

179.McCarty MF: Up-regulation of PPARgamma coactivator-1alpha as a strategy for preventing and reversing insulin resistance and obesity. Med Hypotheses 64: 399–407, 2005.

180.Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C: Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 45: 1169–1196, 2004.

181.Storlien L, Oakes ND, Kelley DE: Metabolic flexibility. Proc Nutr Soc 63: 363–368, 2004.

182.Aas V, Rokling-Andersen M, Wensaas AJ, Thoresen GH, Kase ET, Rustan AC: Lipid metabolism in human skeletal muscle cells: effects of palmitate and chronic hyperglycaemia. Acta Physiol Scand 183: 31–41, 2005.

183.Parish R, Petersen KF: Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep 5: 177–183, 2005.

184.Ory DS: Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Circ Res 95: 660–670, 2004.

185.Clarke SD: The multi-dimensional regulation of gene expression by fatty acids: polyunsaturated fats as nutrient sensors. Curr Opin Lipidol 15: 13–18, 2004.

186.Schmitz G, Langmann T: Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim Biophys Acta 1735: 1–19, 2005.

Соседние файлы в предмете Биохимия