Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биохимия атеросклероза

.pdf
Скачиваний:
47
Добавлен:
20.06.2014
Размер:
4.45 Mб
Скачать

178 Manfredi Rizzo and Kaspar Berneis

nine other established cardiovascular risk factors, including plasma lipids and lipoproteins.

Increased intima media thickness (IMT) is considered a reliable surrogate marker of early atherosclerosis and it has been demonstrated that small dense LDL is independently related to CCA IMT in 50-year-old men [73]. IMT has been shown to correlate significantly with the presence of CHD and to predict coronary events [92–95]. In addition, significant relationships of IMT with other lipid parameters such as LDL-cholesterol [96] and apoB [97] have been demonstrated. In the study described above LDL size was significantly associated with carotid IMT in diabetes type 2 patients and LDL size was the second strongest predictor of IMT, after smoking when compared to nine other cardiovascular risk factors and the strongest of all lipid parameters.

In summary LDL size is a marker of clinical apparent (CHD) and nonapparent (IMT) atherosclerosis in type 2 diabetes. However a potential superior clinical value to predict cardiovascular events in this population needs to be shown in prospective studies, before routine laboratory measurements of LDL size can be recommended.

Effects of Hypolipidemic Treatment on LDL Size

Hypolipidemic treatment is capable of altering LDL subclass distribution. Particularly medication with triglyceride-lowering effects will shift LDL peak size from smaller denser to larger more buoyant particles. As explained in more detail earlier, reduced availability of triglyceride-rich VLDL particles lead to a reduction in the production of small dense LDL. This has been shown for fibrates and niacin: these substances lower preferentially small dense LDL, so that the LDL peak size shifts to larger particles. Statins potentially lower large, medium, and small LDL particles; therefore, the beneficial net effect of statins on LDL size is often none or only moderate. However, a strong variation has been noticed among the different statin molecules [1, 98–101].

Conclusions

Genetic and environmental factors influence the expression of small dense LDL, which is not completely independent of traditional lipids and, in fact, correlates negatively with plasma HDL concentrations and positively with plasma triglyceride levels. Small dense LDL are associated with the metabolic syndrome and with increased risk for cardiovascular disease and diabetes mellitus. LDL size seems also to be an important predictor of cardiovascular events and progression of CAD and the predominance of small dense LDL has been accepted as an emerging cardiovascular risk factor by the National Cholesterol Education Program Adult Treatment Panel III [7].

In addition, patients with acute myocardial infarction show an early reduction of LDL size, which persist during hospitalization and seems to precede

Chapter 9. The Clinical Significance of Small Dense LDL

179

all other plasma lipoprotein modifications. It has been recently shown that even angina itself (on the background of coronary artery spasm) without atherosclerosis may lower LDL size [102]. Hypolipidemic treatment is able to increase LDL particles size [1–3] and this increment correlates with regression of coronary stenosis [1–3]. However, it is still on debate whether to measure the LDL size routinely and in which categories of patients [39].

Recently, the Coordinating Committee of the National Cholesterol Education Program suggested that very high-risk patients may benefit from stronger measures of lipid-lowering therapies [84]. Since the therapeutic modulation of distinct LDL subspecies is of great benefit in reducing the risk of cardiovascular events, LDL size measurement should be extended in primary prevention as much as possible to patients at high risk of cardiovascular diseases. In addition, screening for the presence of small dense LDL in patients with coronary or noncoronary forms of atherosclerosis may also identify those with even higher vascular risk and may contribute in directing specific antiatherosclerotic treatments (secondary prevention) in order to prevent new vascular events in the same or another district.

Acknowledgments: The authors wish to thank Prof. Ronald M. Krauss (Senior Scientist, Lawrence Berkeley National Laboratory, University of California, Berkeley, USA and Director of Atherosclerosis Research, Children’s Hospital Oakland Research Institute, Oakland, California, USA) and Prof. Alberto Notarbartolo (Head, Department of Clinical Medicine and Emerging Diseases, University of Palermo, Italy) for their strong, valuable, and unique support on the authors’ researches in this field. Kaspar Berneis was supported by a research grant from the Swiss National Foundation 3200B0-105258/1.

References

1.Berneis K, Rizzo M. LDL size: does it matter? Swiss Med Weekly 134:720–724, 2004.

2.Rizzo M, Berneis K. Should we measure routinely the LDL peak particle size? Int J Card 107: 147–151, 2006.

3.Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 43:1363–1379, 2002.

4.Krauss RM, Blanche PJ. Detection and quantification of LDL subfractions. Curr Opin Lipidol 3:377–383, 1992.

5.Packard CJ, Shepherd J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler Thromb Vasc Biol 17:3542–3556, 1997.

6.Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82:495–506, 1990.

7.National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of

180 Manfredi Rizzo and Kaspar Berneis

High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106:3143–421, 2002.

8.Austin MA. Genetic epidemiology of low-density lipoprotein subclass phenotypes. Ann Med 24:477–481, 1992.

9.Rizzo M, Barbagallo CM, Severino M, Polizzi F, Onorato F, Noto D, Cefalu AB, Pace A, Marino G, Notarbartolo A, Averna RM. Low-density-lipoprotein peak particle size in a Mediterranean population. Eur J Clin Invest 33:126–133, 2003.

10.Terry RB, Wood PD, Haskell WL, Stefanick ML, Krauss RM. Regional adiposity patterns in relation to lipids, lipoprotein cholesterol, and lipoprotein subfraction mass in men. J Clin Endocrinol Metab 68:191–199, 1989.

11.de Graaf J, Swinkels DW, Demacker PN, de Haan AF, Stalenhoef AF. Differences in the low density lipoprotein subfraction profile between oral contraceptive users and controls. J Clin Endocrinol Metab 76:197–202, 1993.

12.Dreon DM, Fernstrom HA, Williams PT, Krauss RM. LDL subclass patterns and lipoprotein response to a low-fat, high-carbohydrate diet in women. Arterioscler Thromb Vasc Biol 17:707–714, 1997.

13.Austin MA, Brunzell JD, Fitch WL, Krauss RM. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis 10:520–530, 1990.

14.Teng B, Thompson GR, Sniderman AD, Forte TM, Krauss RM, Kwiterovich PO Jr. Composition and distribution of low density lipoprotein fractions in hyperapobetalipoproteinemia, normolipidemia, and familial hypercholesterolemia. Proc Natl Acad Sci U S A 80:6662–6666, 1983.

15.Genest J Jr, Bard JM, Fruchart JC, Ordovas JM, Schaefer EJ. Familial hypoalphalipoproteinemia in premature coronary artery disease. Arterioscler Thromb 13:1728–1737, 1993.

16.Gofman JW, Lindgren F. The role of lipids and lipoproteins in atherosclerosis. Science 111:166–171, 1950.

17.Lindgren FT, Nichols AV, Hayes TL, Freeman NK, Gofman JW. Structure and homogeneity of the low-density serum lipoproteins. Ann N Y Acad Sci 72: 826–844, 1959.

18.Gofman JW, Young W, Tandy R. Ischemic heart disease, atherosclerosis, and longevity. Circulation 34: 679–697, 1966.

19.Sata T, Havel RJ, Jones AL. Characterization of subfractions of triglyceride-rich lipoproteins separated by gel chromatography from blood plasma of normolipemic and hyperlipemic humans. J. Lipid Res 13:757–768, 1972.

20.Lee DM, Alaupovic P. Composition and concentration of apolipoproteins in very-low- and low-density lipoproteins of normal human plasma. Atherosclerosis 19:501–520, 1974.

21.Packard CJ, Shepherd J, Joerns S, Gotto AM Jr, Taunton OD. Very low density and low density lipoprotein subfractions in type III and type IV hyperlipoproteinemia. Chemical and physical properties. Biochim Biophys Acta 572:269–282, 1979.

22.Krauss RM, Burke D. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J. Lipid Res 23:97–104, 1982.

23.Musliner TA, Giotas C, RM Krauss. Presence of multiple subpopulations of lipoproteins of intermediate density in normal subjects. Arteriosclerosis 6:79–87, 1986.

Chapter 9. The Clinical Significance of Small Dense LDL

181

24.Swinkels DW, Hak-Lemmers HL, Demacker PN. Single spin density gradient ultracentrifugation method for the detection and isolation of light and heavy low density lipoprotein subfractions. J Lipid Res 28:1233–1239, 1987.

25.Krauss RM. Relationship of intermediate and low-density lipoprotein subspecies to risk of coronary artery disease. Am Heart J 113:578–582, 1987.

26.Griffin BA, Caslake MJ, Yip B, Tait GW, Packard CJ, Shepherd J. Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis 83:59–67, 1990.

27.Alaupovic P. Apolipoprotein composition as the basis for classifying plasma lipoproteins. Characterization of ApoAand ApoB-containing lipoprotein families. Prog Lipid Res 30:105–138, 1991.

28.Kandoussi A, Cachera C, Parsy D, Bard JM, Fruchart JC. Quantitative determination of different apolipoprotein B containing lipoproteins by an enzyme linked immunosorbent assay: apoB with apoC-III and apoB with apoE. J Immunoassay 12:305–323, 1991.

29.Alaupovic P. The lipoprotein family concept and its clinical significance. Nutr Metab Cardiovasc Dis 2:52–59, 1992.

30.Otvos JD, Jeyarajah EJ, Bennett DW, Krauss RM. Development of a proton nuclear magnetic resonance spectroscopic method for determining plasma lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clin Chem 38:1632–1638, 1992.

31.Meyer BJ, Caslake MJ, McConnell MM, Packard CJ. Two subpopulations of intermediate density lipoprotein and their relationship to plasma triglyceride and cholesterol levels. Atherosclerosis 153:355–362, 2000.

32.Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 42:1346–1367, 2001.

33.Krauss RM, Hellerstein MK, Neese RA, Blanche PJ, La Belle M, Shames DM. Altered metabolism of large low density lipoproteins in subjects with predominance of small low density lipoproteins. Circulation 92:1–102, 1995.

34.Rizzo M, Taylor JM, Barbagallo CM, Berneis K, Blanche PJ, Krauss RM. Effects on lipoprotein subclasses of combined expression of human hepatic lipase and human apoB in transgenic rabbits. Arterioscler Thromb Vasc Biol 24:141–146, 2004.

35.Jansen H, Hop W, van Tol A, Bruschke AV, Birkenhager JC. Hepatic lipase and lipoprotein lipase are not major determinants of the low density lipoprotein subclass pattern in human subjects with coronary heart disease. Atherosclerosis 107:45–54, 1994.

36.Campos H, Dreon DM, Krauss RM. Associations of hepatic and lipoprotein lipase activities with changes in dietary composition and low density lipoprotein subclasses. J Lipid Res 36:462–472, 1995.

37.Deckelbaum RJ, Granot E, Oschry Y, Rose L, Eisenberg S. Plasma triglyceride determines structure-composition in low and high density lipoproteins. Arteriosclerosis 4:225–231, 1984.

38.Guerin M, Le Goff W, Lassel TS, Van Tol A, Steiner G, Chapman MJ. Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes: impact of the degree of triglyceridemia. Arterioscler Thromb Vasc Biol 21:282–288, 2001.

39.Sacks FM, Campos H. Low-density lipoprotein size and cardiovascular disease: a reappraisal. J Clin Endocr Metab 88:4525–4532, 2003.

182Manfredi Rizzo and Kaspar Berneis

40.Georgieva AM, van Greevenbroek MMJ, Krauss RM, Brouwers MCGJ, Vermeulen VM M-J, Robertus-Teunissen MG, van der Kallen CJH, de Bruin TWA. Subclasses of low-density lipoprotein and very low-density lipoprotein in familial combined hyperlipidemia: relationship to multiple lipoprotein phenotype. Arterioscler Thromb Vasc Biol 24:1–7, 2004.

41.Bjornheden T, Babyi A, Bondjers G, Wiklund O. Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system. Atherosclerosis 123:43–56, 1996.

42.Galeano NF, Al-Haideri M, Keyserman F, Rumsey SC, Deckelbaum RJ. Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenicity. J Lipid Res 39:1263–1273, 1998.

43.Camejo G, Lopez A, Lopez F, Quinones J. Interaction of low density lipoproteins with arterial proteoglycans. The role of charge and sialic acid content. Atherosclerosis 55:93–105, 1985.

44.Tribble DL, Rizzo M, Chait A, Lewis DM, Blanche PJ, Krauss RM. Enhanced oxidative susceptibility and reduced antioxidant content of metabolic precursors of small, dense low-density lipoproteins. Am J Med 110:103–110, 2001.

45.Tribble DL, Holl LG, Wood PD, Krauss RM. Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 93:189–199, 1992.

46.de Graaf J, Hak-Lemmers HL, Hectors MP, Demacker PN, Hendriks JC, Stalenhoef AF. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 11:298–306, 1991.

47.Berneis K, Shames DM, Blanche PJ, La Belle M, Rizzo M, Krauss RM. Plasma clearance of human low-density lipoprotein in human apolipoprotein B transgenic mice is related to particle diameter. Metabolism 53:483–487, 2004.

48.Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921, 1988.

49.Campos H, Genest JJ Jr, Blijlevens E, McNamara JR, Jenner JL, Ordovas JM, Wilson PW, Schaefer EJ. Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb 12:187–195, 1992.

50.Griffin BA, Freeman DJ, Tait GW, Thomson J, Caslake MJ, Packard CJ, Shepherd J. Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small dense LDL to coronary heart disease risk. Atherosclerosis 106:241–253, 1994.

51.Coresh J, Kwiterovich PJ, Smith H, Bachorik P. Association of plasma triglyceride concentration and LDL diameter density, and chemical composition with premature coronary artery disease in men and woman. J Lipid Res 34:1687–1697, 1993.

52.Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, Hennekens CH. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 276:882–888, 1996.

53.Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 276:875–881, 1996.

54.Lamarche B, St-Pierre AC, Ruel IL, Cantin B, Dagenais GR, Despres JP. A prospective, population-based study of low density lipoprotein particle size as a risk factor for ischemic heart disease in men. Can J Cardiol 17:859–865, 2001.

Chapter 9. The Clinical Significance of Small Dense LDL

183

55.St-Pierre AC, Ruel IL, Cantin B, Dagenais GR, Bernard PM, Despres JP, Lamarche B. Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation 104:2295–2299, 2001.

56.Mykkanen L, Kuusisto J, Haffner SM, Laakso M, Austin MA. LDL size and risk of coronary heart disease in elderly men and women. Arterioscler Thromb Vasc Biol 19:2742–2748, 1999.

57.Campos H, Moye LA, Glasser SP, Stampfer SP, Sacks FM. Low-density lipoprotein size, pravastatin treatment, and coronary events. JAMA 286:1468–1474, 2001.

58.Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, Cheng S, Shuldiner AR. Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA 290:2030–2040, 2003.

59.Rizzo M, Barbagallo CM, Noto D, Pernice V, Polizzi F, Cefalu’ AB, Notarbartolo A, Averna MR. Accumulation of ApoE-containing triglyceride-rich lipoproteins in normolipidemic men with premature coronary artery disease. Circulation Suppl 102:601–602, 2000 (abstract).

60.Rizzo M, Barbagallo CM, Pace A, Noto D, Maggiore M, Frasheri A, Pernice V, Barone G, Rubino A, Pieri D, Notarbartolo A, Averna M. LDL peak particle size and the extension of coronary atherosclerosis in 72 patients that underwent an angiographic exam. Nutr. Metabol. Cardiovasc. Dis. 14:316, 2004 (abstract).

61.Kingswood JC, Williams S, Owens DR. How soon after myocardial infarction should plasma lipid values be assessed? Br Med J 289:1651–1653, 1984.

62.Avogaro P, Bon GB, Cazzolato G et al. Variations in apolipoproteins B and A1 during the course of myocardial infarction. Eur J Clin Invest 8:121–129, 1978.

63.Rosenson RS. Myocardial injury: the acute phase response and lipoprotein metabolism. J Am Coll Cardiol 22:933–940, 1993.

64.Carlsson R, Lindberg G, Westin L, Israelsson B. Serum lipids four weeks after acute myocardial infarction are a valid basis for lipid lowering intervention in patients receiving thrombolysis. Br Heart J 74:18–20, 1995.

65.Pfohl M, Schreiber I, Liebich HM, Haring HU, Hoffmeister HM. Upregulation of cholesterol synthesis after acute myocardial infarction—is cholesterol a positive acute phase reactant? Atherosclerosis 142:389–393, 1999.

66.Lees RS, Fiser RH Jr, Beisel WR, Bartelloni PJ. Effects of an experimental viral infection on plasma lipid and lipoprotein metabolism. Metabolism 21:825–833, 1972.

67.Stubbe I, Gustafson A, Nilsson-Ehle P: Alterations in plasma proteins and lipoproteins in acute myocardial infarction: effects on activation of lipoprotein lipase. Scand J Clin Lab Invest 42:437–444, 1982.

68.Feingold KR, Pollock AS, Moser AH, Shigenaga JK, Grunfeld C. Discordant regulation of proteins of cholesterol metabolism during the acute phase response. J Lipid Res 36:1474–1482, 1995.

69.Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature. Am J Med 98:75–84, 1995.

70.Barbagallo CM, Rizzo M, Cefalù AB et al. Changes in plasma lipids and lowdensity lipoprotein peak particle size during and after myocardial infarction. Am J Card 89:460–462, 2002.

71.O’Neal DN, Lewicki J, Ansari MZ et al. Lipid levels and peripheral vascular disease in diabetic and non-diabetic subjects. Atherosclerosis 136:1–8, 1998.

72.Landray MJ, Sagar G, Muskin J, Murray S, Holder RL, Lip GYH. Association of atherogenic low-density lipoprotein subfractions with carotid atherosclerosis. Q J Med 91:345–351, 1998.

184Manfredi Rizzo and Kaspar Berneis

73.Skoglund-Andersson C, Tang R, Bond MG, de Faire U, Hamsten A, Karpe F. LDL particle size distribution is associated with carotid intima-media thickness in healthy 50-year-old men. Arterioscler Thromb Vasc Biol 19:2422–2430, 1999.

74.Bokemark L, Wikstrand J, Attvall S, Hulthe J, Wedel H, Fagerberg B. Insulin resistance and intima-media thickness in the carotid and femoral arteries of clinically healthy 58-year-old men. The Atherosclerosis and Insulin Resistance Study (AIR). J Intern Med 249:59–67, 2001.

75.Hallman DM, Brown SA, Ballantyne CM, Sharrett AR, Boerwinkle E. Relationship between low-density lipoprotein subclasses and asymptomatic atherosclerosis in subjects from the Atherosclerosis Risk in Communities (ARIC) Study. Biomarkers 9:190–202, 2004.

76.Hulthe J, Bokemark L, Wikstrand J, Fagerberg B. The metabolic syndrome, LDL particle size, and atherosclerosis: the Atherosclerosis and Insulin Resistance (AIR) study. Arterioscler Thromb Vasc Biol 20:2140–2147, 2000.

77.Liu M-L, Ylitalo K, Nuotio I, Salonen R, Salonen JT, Taskinen MR. Association between carotid intima-media thickness and low-density lipoprotein size and susceptibility of low-density lipoprotein to oxidation in asymptomatic members of familial combined hyperlipidemia families. Stroke 33:1255–1260, 2002.

78.van Tits LJ, Smilde TJ, van Wissen S, de Graaf J, Kastelein JJ, Stalenhoef AF. Effects of atorvastatin and simvastatin on low-density lipoprotein subfraction profile, low-density lipoprotein oxidizability, and antibodies to oxidized lowdensity lipoprotein in relation to carotid intima media thickness in familial hypercholesterolemia. J Investig Med 52:177–184, 2004.

79.Watanabe T, Koba S, Kawamura M, Itokawa M, Idei T, Nakagawa Y, Iguchi T, Katagiri T. Small dense low-density lipoprotein and carotid atherosclerosis in relation to vascular dementia. Metabolism 53:476–482, 2004.

80.Hulthe J, Wiklund O, Olsson G, Fagerberg B, Bokemark L, Nivall S, Wikstrand J. Computerized measurement of LDL particle size in human serum. Reproducibility studies and evaluation of LDL particle size in relation to metabolic variables and the occurrence of atherosclerosis. Scand J Clin Lab Invest 59:649–661, 1999.

81.Berneis K, Jeanneret C, Muser J, Felix B, Miserez AR. Low-density lipoprotein size and subclasses are markers of clinically apparent and non-apparent atherosclerosis in type 2 diabetes. Metabolism 54:227–234, 2005.

82.Wallenfeldt K, Bokemark L, Wikstrand J, Hulthe J, Fagerberg B. Apolipoprotein B/apolipoprotein A-I in relation to the metabolic syndrome and change in carotid artery intima-media thickness during 3 years in middle-aged men. Stroke 35:2248–2252, 2004.

83.Gorter PM, Olijhoek JK, van der Graaf Y, Algra A, Rabelink TJ, Visseren FL; SMART Study Group. Prevalence of the metabolic syndrome in patients with coronary heart disease, cerebrovascular disease, peripheral arterial disease or abdominal aortic aneurysm. Atherosclerosis 173:363–369, 2004.

84.Grundy SM, Cleeman JI, Merz CNB, Brewer HB, Clark LT, Hunninghake DB et al. for the Coordinating Committee of the National Cholesterol Education Program. Implications of Recent Clinical Trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. Circulation 110:227–239, 2004.

85.Rizzo M, Barbagallo CM, Noto D, Pace A, Cefalu’ AB, Pernice V, Rubino A, Pinto V, Pieri D, Traina M, Frasheri A, Notarbartolo A, Averna MR. Diabetes, family history and extension of coronary atherosclerosis are strong predictors of

Chapter 9. The Clinical Significance of Small Dense LDL

185

adverse events after PTCA: a one year follow-up study. Nutr Metabol Cardiovasc Dis, 15:361–367, 2005.

86.Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes 37:1595–1607, 1988.

87.Selby JV, Austin MA, Newman B et al. LDL subclass phenotypes and the insulin resistance syndrome in women. Circulation 88:381–387, 1993.

88.Syvanne M, Taskinen MR. Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 350 (Suppl 1):SI20–S123, 1997.

89.U.K. Prospective Diabetes Study 27. Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care 20:1683–1687, 1997.

90.Friedlander Y, Kidron M, Caslake M, Lamb T, McConnell M, Bar-On H. Low density lipoprotein particle size and risk factors of insulin resistance syndrome. Atherosclerosis 148:141–149, 2000.

91.Austin MA, Mykkanen L, Kuusisto J et al. Prospective study of small LDLs as a risk factor for non-insulin dependent diabetes mellitus in elderly men and women. Circulation 92:1770–1778, 1995.

92.Chambless LE, Heiss G, Folsom AR et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 146:483–494, 1997.

93.Craven TE, Ryu JE, Espeland MA et al. Evaluation of the associations between carotid artery atherosclerosis and coronary artery stenosis. A case–control study. Circulation 82:1230–1242, 1990.

94.Salonen JT, Salonen R. Ultrasound B-mode imaging in observational studies of atherosclerotic progression. Circulation 87:II56–II65, 1993.

95.Wofford JL, Kahl FR, Howard GR, McKinney WM, Toole JF, Crouse JR III. Relation of extent of extracranial carotid artery atherosclerosis as measured by B-mode ultrasound to the extent of coronary atherosclerosis. Arterioscler Thromb 11:1786–1794, 1991.

96.Goya K, Kitamura T, Inaba M et al. Risk factors for asymptomatic atherosclerosis in Japanese type 2 diabetic patients without diabetic microvascular complications. Metabolism 52:1302–1306, 2003.

97.Niskanen L, Rauramaa R, Miettinen H, Haffner SM, Mercuri M, Uusitupa M. Carotid artery intima-media thickness in elderly patients with NIDDM and in nondiabetic subjects. Stroke 27:1986–1992, 1996.

98.Rizzo M, Barbagallo CM, Pernice V, Rubino A, Noto D, Pace A, Amato S, Camarda C, Pinto V, Pieri D, Frasheri A, Notarbartolo A, Averna MR. Effects “beyond-cholesterol” by statins: a 3-months therapy with simvastatin reduces the atherogenic lipoproteins in patients with premature coronary artery disease and in absence of the traditional cardiovascular risk factors. Trends in Med 4:157–162, 2004 (in Italian).

99.Rizzo M, Berneis K. Lipid triad of atherogenic lipoprotein phenotype: a role in cardiovascular prevention? J Atheroscler Thromb, 12:237–239, 2005.

100.Superko RH, Berneis KK, William PT, Rizzo M, Wood PD. Gemfibrozil reduces small low-density lipoprotein more in normolipemic subjects classified as low-density lipoprotein pattern B compared with pattern A. Am J Card, 96:1266–1272, 2005.

101.Rizzo M, Berneis K. Low-density-lipoproteins size and cardiovascular prevention. Eur J Internal Med, 96:1266–1272; 2005.

102.Miwa K. Low density lipoprotein particles are small in patients with coronary vasospasm. Int J Cardiol 87:193–201, 2003.

Biochemistry of Atherosclerosis edited by S.K. Cheema, Springer, New York, 2006

10

Bile Acids: At the Crossroads

of Sterol, Fat, and Carbohydrate

Metabolism

LUIS B. AGELLON

Abstract

Bile acids are classically known as natural detergents that help keep cholesterol soluble in bile and aid in the absorption of lipids and lipid-soluble nutrients from the gut. Since bile acids are synthesized from cholesterol, they are also regarded as end products of cholesterol catabolism. It was recently known that bile acids can modulate cellular signaling cascades. Importantly, bile acids can regulate the expression of a variety of genes by serving as ligand and activator of a nuclear receptor transcription factor known as farnesoid X receptor (FXR). The identity of the genes that are responsive to regulation by bile acids via FXR suggests that bile acids can regulate, and possibly coordinate, the metabolism of sterols, fats, and carbohydrates.

Keywords: bile acids; cholesterol; enterohepatic circulation; fatty acids; gene regulation; glucose; liver; nuclear receptors; transgenic mice

Abbreviations: cyp7a, cholesterol 7α-hydroxylase; FXR, farnesoid X receptor; LXR, liver X receptor; LDL, low-density lipoproteins; LRH-1, liver receptor homolog pro- tein-1; NR, nuclear receptor; PPAR, peroxisome proliferator-activated receptor; PXR, pregnane X receptor; SHP, short heterodimer partner; SREBP, sterol response element binding protein; VLDL, very low-density lipoproteins

Introduction

The metabolism of cholesterol is complicated and there are many factors involved in its synthesis, assimilation from dietary sources, transport, and disposal. It is generally accepted that the removal of excess cholesterol from peripheral tissues involves the “reverse cholesterol transport pathway” which operates to off-load cholesterol from peripheral cells and delivers it to the liver for disposal.

The liver is the only organ that is capable of eliminating meaningful amounts of cholesterol from the body. This is done directly by secretion of unesterified cholesterol into bile (biliary cholesterol) and indirectly by facilitating the conversion of cholesterol into bile acids for secretion into bile

186

Chapter 10. Bile Acids: At the Crossroads of Sterol, Fat, and Carbohydrate

187

(Fig. 10.1). However, biliary cholesterol can mix with diet-derived cholesterol and thus can reenter the body via absorption from the lumen of the intestine. Bile acids are also reabsorbed by the intestine but because cholesterol cannot be recovered from bile acids, the conversion of cholesterol into bile acids represents a terminal step in the catabolism of cholesterol. Bile acid synthesis can account for the elimination of 400–1000 mg of cholesterol per day compared to a combined total of about 100 mg via other pathways (steroid hormone synthesis and shedding of epithelial surfaces).

The synthesis of bile acids takes place only in the liver and the hepatic enzyme known as cholesterol 7α-hydroxylase (cyp7a) catalyzes the first and rate-controlling step in the classical bile acid biosynthetic pathway (Fig. 10.2). Peripheral cells can transform cholesterol into oxysterols, and upon their transport to the liver they complete their transformation into bile acids. This alternative pathway is distinguished from the classical pathway in that cholesterol is first transformed into an oxysterol other than 7α-hydroxycholesterol. The classical pathway is under complex regulatory control whereas the alternative pathway operates constitutively.

Dietary cholesterol

Liver

Bile

Small intestine

Bile

Cholesterol Plasma

acids

Portal circulation

excretion

FIGURE 10.1. Transport of cholesterol and bile acids in the enterohepatic circulation. The path traced by cholesterol (solid lines) and bile acids (broken lines) in the enterohepatic circulation is shown.

Соседние файлы в предмете Биохимия