
- •И. А. Паначев г. В. Широколобов
- •Сопротивление материалов учебное пособие
- •Оглавление
- •Глава. 13. Статически неопределимый рамный брус
- •Глава. 15. Расчёты на прочность при циклических
- •Основные формулы сопротивления материалов…………...181
- •Принятые обозначения
- •Предисловие
- •Глава 1 общие положения и контрольные задания
- •1.1. Цель и задачи курса сопротивления материалов
- •1.2. Перечень дисциплин, усвоение которых необходимо для изучения данной дисциплины
- •1.2.1. Высшая математика
- •1.2.2. Теоретическая механика
- •1.3. Порядок выполнения контрольных работ
- •1.4. Задачи для контрольных работ Задача №1
- •Задача №2
- •Задача №3
- •Задача №4
- •Задача №5
- •Задача № 6
- •Задача №7
- •Задача №8
- •Задача №8
- •Задача №9
- •Задача № 10
- •Задача №11
- •Задача №12
- •Продолжение рис. 1. 12
- •Задача №13
- •Задача № 14
- •Глава 2 растяжение и сжатие
- •2.1. Внутренние усилия
- •2.2. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона
- •2.3. Формула нормальных напряжений при растяжении – сжатии
- •2.4. Пример
- •Решение
- •Глава 3 статически неопределимые системы при
- •3.1. Расчет статически неопределимых систем
- •3.2. Расчет по разрушающим нагрузкам (предельному состоянию)
- •3.3. Пример
- •3.4. Расчет по предельному состоянию
- •Глава 4 теория напряженного состояния
- •4.1. Понятие о главных напряжениях. Виды
- •Напряжённого состояния в точке тела.
- •4.2. Плоское напряжённое состояние
- •4.3. Пример
- •Глава 5 кручение стержней круглого поперечного сечения
- •5.1. Крутящие моменты
- •5.2. Напряжения и деформации
- •5.3. Пример
- •Глава 6 геометрические характеристики плоских сечений
- •6.1. Площадь плоских сечений (фигур)
- •6.2. Статические моменты площади сечения. Центр тяжести сечения
- •6.3. Моменты инерции сечений
- •6.4. Положение главных центральных осей инерции и величина главных моментов инерции
- •6.5. Последовательность (алгоритм) определения положения главных центральных осей инерции и величин главных центральных моментов инерции
- •6.6. Пример
- •Глава 7 изгиб прямых брусьев
- •7.1. Общие понятия о деформации изгиба
- •7.2. Определение внутренних усилий при плоском изгибе
- •7.3. Правило знаков для изгибающих моментов и поперечных сил
- •7.4. Построение эпюр поперечных сил и изгибающих моментов
- •7.5. Подбор сечения
- •7.6. Пример
- •7.7. Правила контроля эпюр q и м
- •Глава 8 построение эпюр для статически определимой плоской рамы
- •8.1. Правила знаков
- •8. 2. Пример
- •Глава 9 определение перемещений при изгибе
- •9.1. Аналитический способ определения перемещений
- •9.2. Правила Клебша
- •9.3. Пример
- •9.3.1. Определение опорных реакций:
- •Глава 10 внецентренное сжатие (растяжение) прямого бруса
- •10.1. Пример
- •Глава 11 совместное действие кручения и изгиба
- •11.1. Определение эквивалентных напряжений при одновременном действии изгиба и кручения для бруса круглого поперечного сечения
- •11.2. Пример 1
- •Решение
- •11.3. Пример 2
- •Глава 12 устойчивость сжатых стержней
- •12.1. Формула Эйлера для определения критической нагрузки
- •12.2. Определение критической силы за пределами пропорциональности. Формула Ясинского
- •12.3. Расчёт на устойчивость по коэффициенту понижения φ допускаемого напряжения на сжатие [σ]с
- •12.4. Пример
- •Глава 13 статически неопределимый рамный брус (основы метода сил)
- •13.1. Порядок расчета методом сил
- •13.1.6. Проводим проверку окончательную проверку эпюры изгибающих моментов м:
- •13.2. Использование симметрии
- •13.3. Пример
- •Решение
- •Правило знаков
- •13.3.6. Статическая проверка. Вырезаем узел е (рис. 13.15) и проверяем выполнение условий (13.6) см. Пункт 13.1.6, а.
- •Глава 14 динамическое действие нагрузок
- •14.1. Колебание систем с одной степенью свободы
- •14.2. Свободные колебания системы с одной степенью свободы
- •14.3. Вынужденные колебания системы
- •14.4. Пример
- •Глава 15 расчёты на прочность при циклических нагрузках (усталость)
- •15.1. Пример
- •Общий коэффициент запаса
- •Приложения
- •1. Геометрические характеристики сечений
- •2. Коэффициент приведения длины
- •3. Рекомендуемые диаметры валов (по гост 6636-69
- •4. Коэффициент уменьшения основного допускаемого
- •5. Формула Ясинского
- •6. Способ Верещагина
- •7. Значения коэффициента ψ
- •8. Основные механические характеристики сталей для
- •Продолжение таблицы
- •9. Напрессовка
- •Усилие Поправочный передаётся коэффициент
- •1 0. Шпоночный паз
- •1 1. Проточка
- •Эффективный коэффициент концентрации
- •Поправочный коэффициент
- •12. Галтель
- •Эффективный коэффициент концентрации
- •Поправочный коэффициент
- •13. Отверстие
- •Эффективный коэффициент концентрации
- •14. Основные единицы механических величин
- •1 5. Сталь прокатная угловая равнобокая. Сортамент гост 850989
- •Основные формулы сопротивления материалов Растяжение и сжатие
- •Сложное напряженное состояние
- •Объемное напряженное состояние
- •Теории прочности
- •Сдвиг и кручение
- •Геометрические характеристики плоских сечений
- •Изгиб прямых брусьев
- •Сложное сопротивление
- •Косой изгиб
- •Внецентренное сжатие
- •Кручение с изгибом
- •Устойчивость сжатых стержней (продольный изгиб)
- •Расчет статически неопределимых систем
- •Динамическое действие нагрузок
- •Колебания
- •Расчеты на прочность при циклических нагрузках (усталость)
- •Список литературы
Глава 7 изгиб прямых брусьев
7.1. Общие понятия о деформации изгиба
Изгиб представляет собой такую деформацию, при которой в поперечных сечениях стержня возникают изгибающие моменты, т.е. внутренние моменты, плоскость действия которых перпендикулярна плоскости поперечного сечения стержня.
Изгиб называется чистым, если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении стержня.
В случае, когда в поперечном сечении наряду с изгибающим моментом возникает поперечная сила, изгиб называется поперечным.
Если плоскость действия сил (силовая плоскость) проходит через одну из главных центральных осей инерции поперечного сечения стержня, изгиб называется простым или плоским (применяется также название прямой изгиб).
7.2. Определение внутренних усилий при плоском изгибе
На основании метода сечений можно записать, что:
а) поперечная сила Q в любом произвольном сечении балки численно равна алгебраической сумме проекций всех внешних сил, действующих по одну сторону от сечения на нормаль к продольной оси балки (ось Y):
(
7.1)
б) изгибающий момент в любом произвольном сечении балки численно равен алгебраической сумме моментов всех внешних сил, действующих по одну сторону от сечения относительно центра тяжести данного сечения:
(
7.2)
7.3. Правило знаков для изгибающих моментов и поперечных сил
Поперечная сила считается положительной, если равнодействующая внешних сил слева от сечения направлена снизу вверх, а справа – сверху вниз (рис. 7.1, а), и отрицательной – в противоположном случае (рис. 7.1, б).
Изгибающий момент в сечении балки считается положительным, если нижние волокна растягиваются, а верхние сжимаются (рис. 7.2, а), и отрицательным – верхние растягиваются, а нижние сжимаются (рис. 7.2, б)
Из рис. 7.2 следует более удобное для запоминания правило знаков изгибающих моментов. Изгибающий момент считается положительным, если в рассматриваемом сечении балка изгибается выпуклостью вниз (рис. 7.2, а) и наоборот.
7.4. Построение эпюр поперечных сил и изгибающих моментов
Построение эпюр Q и М выполняют в следующем порядке.
7.4.1. Определяют опорные реакции с помощью уравнений статики, например:
(7.3)
где Z – ось балки; А, В – любые точки, лежащие на оси Z.
7.4.2. Балка разбивается на n участков. Границами участков будут сечения, в которых меняется характер нагрузки. Это сечения, где приложена сосредоточенная сила, пара сил, начинается или заканчивается распределённая нагрузка.
7.4.3. Для каждого участка по формулам (7.1) и (7.2) составляют в общем виде выражения Q и М в зависимости от текущей координаты Z.
7.4.4. Для характерных сечений определяют значения Q и М. Эта операция может быть выполнена без составления выражений (7.1), (7.2). В этом случае для построения эпюр Q и М используют правила контроля эпюр, основанные на дифференциальных зависимостях:
(7.4)
7.4.5. С помощью значений Q и М, полученных в п. 7.4.4, строят эпюры этих усилий.