- •И. А. Паначев г. В. Широколобов
- •Сопротивление материалов учебное пособие
- •Оглавление
- •Глава. 13. Статически неопределимый рамный брус
- •Глава. 15. Расчёты на прочность при циклических
- •Основные формулы сопротивления материалов…………...181
- •Принятые обозначения
- •Предисловие
- •Глава 1 общие положения и контрольные задания
- •1.1. Цель и задачи курса сопротивления материалов
- •1.2. Перечень дисциплин, усвоение которых необходимо для изучения данной дисциплины
- •1.2.1. Высшая математика
- •1.2.2. Теоретическая механика
- •1.3. Порядок выполнения контрольных работ
- •1.4. Задачи для контрольных работ Задача №1
- •Задача №2
- •Задача №3
- •Задача №4
- •Задача №5
- •Задача № 6
- •Задача №7
- •Задача №8
- •Задача №8
- •Задача №9
- •Задача № 10
- •Задача №11
- •Задача №12
- •Продолжение рис. 1. 12
- •Задача №13
- •Задача № 14
- •Глава 2 растяжение и сжатие
- •2.1. Внутренние усилия
- •2.2. Продольные и поперечные деформации. Закон Гука. Коэффициент Пуассона
- •2.3. Формула нормальных напряжений при растяжении – сжатии
- •2.4. Пример
- •Решение
- •Глава 3 статически неопределимые системы при
- •3.1. Расчет статически неопределимых систем
- •3.2. Расчет по разрушающим нагрузкам (предельному состоянию)
- •3.3. Пример
- •3.4. Расчет по предельному состоянию
- •Глава 4 теория напряженного состояния
- •4.1. Понятие о главных напряжениях. Виды
- •Напряжённого состояния в точке тела.
- •4.2. Плоское напряжённое состояние
- •4.3. Пример
- •Глава 5 кручение стержней круглого поперечного сечения
- •5.1. Крутящие моменты
- •5.2. Напряжения и деформации
- •5.3. Пример
- •Глава 6 геометрические характеристики плоских сечений
- •6.1. Площадь плоских сечений (фигур)
- •6.2. Статические моменты площади сечения. Центр тяжести сечения
- •6.3. Моменты инерции сечений
- •6.4. Положение главных центральных осей инерции и величина главных моментов инерции
- •6.5. Последовательность (алгоритм) определения положения главных центральных осей инерции и величин главных центральных моментов инерции
- •6.6. Пример
- •Глава 7 изгиб прямых брусьев
- •7.1. Общие понятия о деформации изгиба
- •7.2. Определение внутренних усилий при плоском изгибе
- •7.3. Правило знаков для изгибающих моментов и поперечных сил
- •7.4. Построение эпюр поперечных сил и изгибающих моментов
- •7.5. Подбор сечения
- •7.6. Пример
- •7.7. Правила контроля эпюр q и м
- •Глава 8 построение эпюр для статически определимой плоской рамы
- •8.1. Правила знаков
- •8. 2. Пример
- •Глава 9 определение перемещений при изгибе
- •9.1. Аналитический способ определения перемещений
- •9.2. Правила Клебша
- •9.3. Пример
- •9.3.1. Определение опорных реакций:
- •Глава 10 внецентренное сжатие (растяжение) прямого бруса
- •10.1. Пример
- •Глава 11 совместное действие кручения и изгиба
- •11.1. Определение эквивалентных напряжений при одновременном действии изгиба и кручения для бруса круглого поперечного сечения
- •11.2. Пример 1
- •Решение
- •11.3. Пример 2
- •Глава 12 устойчивость сжатых стержней
- •12.1. Формула Эйлера для определения критической нагрузки
- •12.2. Определение критической силы за пределами пропорциональности. Формула Ясинского
- •12.3. Расчёт на устойчивость по коэффициенту понижения φ допускаемого напряжения на сжатие [σ]с
- •12.4. Пример
- •Глава 13 статически неопределимый рамный брус (основы метода сил)
- •13.1. Порядок расчета методом сил
- •13.1.6. Проводим проверку окончательную проверку эпюры изгибающих моментов м:
- •13.2. Использование симметрии
- •13.3. Пример
- •Решение
- •Правило знаков
- •13.3.6. Статическая проверка. Вырезаем узел е (рис. 13.15) и проверяем выполнение условий (13.6) см. Пункт 13.1.6, а.
- •Глава 14 динамическое действие нагрузок
- •14.1. Колебание систем с одной степенью свободы
- •14.2. Свободные колебания системы с одной степенью свободы
- •14.3. Вынужденные колебания системы
- •14.4. Пример
- •Глава 15 расчёты на прочность при циклических нагрузках (усталость)
- •15.1. Пример
- •Общий коэффициент запаса
- •Приложения
- •1. Геометрические характеристики сечений
- •2. Коэффициент приведения длины
- •3. Рекомендуемые диаметры валов (по гост 6636-69
- •4. Коэффициент уменьшения основного допускаемого
- •5. Формула Ясинского
- •6. Способ Верещагина
- •7. Значения коэффициента ψ
- •8. Основные механические характеристики сталей для
- •Продолжение таблицы
- •9. Напрессовка
- •Усилие Поправочный передаётся коэффициент
- •1 0. Шпоночный паз
- •1 1. Проточка
- •Эффективный коэффициент концентрации
- •Поправочный коэффициент
- •12. Галтель
- •Эффективный коэффициент концентрации
- •Поправочный коэффициент
- •13. Отверстие
- •Эффективный коэффициент концентрации
- •14. Основные единицы механических величин
- •1 5. Сталь прокатная угловая равнобокая. Сортамент гост 850989
- •Основные формулы сопротивления материалов Растяжение и сжатие
- •Сложное напряженное состояние
- •Объемное напряженное состояние
- •Теории прочности
- •Сдвиг и кручение
- •Геометрические характеристики плоских сечений
- •Изгиб прямых брусьев
- •Сложное сопротивление
- •Косой изгиб
- •Внецентренное сжатие
- •Кручение с изгибом
- •Устойчивость сжатых стержней (продольный изгиб)
- •Расчет статически неопределимых систем
- •Динамическое действие нагрузок
- •Колебания
- •Расчеты на прочность при циклических нагрузках (усталость)
- •Список литературы
6.2. Статические моменты площади сечения. Центр тяжести сечения
Статическими моментами площади сечения, относительно осей Х и Y, лежащих в плоскости этой фигуры (рис. 6.2), называются геометрические характеристики, определяемые формулами
(6.3)
(6.4)
Если известно положение центра тяжести хс и yc (рис. 6.2) и его площадь F, то статические моменты определяют по формулам
(6.5)
(
6.6)
Из формул (6.5) и (6.6) следует, что статический момент площади плоской фигуры (сечения) относительно любой центральной оси равен нулю. Обратное положение также справедливо: если статический момент сечения относительно какой-либо оси равен нулю, то эта ось является центральной, т.е. проходит через центр тяжести сечения С.
В зависимости от положения сечения относительно осей координат статический момент может быть положительным или отрицательным.
Из (6.5) и (6.6) могут быть определены координаты центра тяжести фигуры:
(6.7)
(6.8)
Для вычисления статических моментов сложной фигуры её разбивают на простые части, для каждой из которых известна площадь Fi и положение центра тяжести (хi, yi). Статические моменты всей фигуры относительно осей X и Y определяют по формулам:
(6.9)
(6.10)
Координаты центра тяжести сложной фигуры определяют:
(6.11)
(6.12)
6.3. Моменты инерции сечений
Осевые моменты инерции площади поперечного сечения бруса относительно осей Х и Y (рис. 6.2):
(6.13)
(
6.14)
Полярный момент инерции относительно начала координат (полюса) (рис. 6.2) равен:
(6.15)
Если через полюс проведена система взаимно перпендикулярных осей х, y, то ρ2 = х2 + y2 (рис. 6. 2) и, следовательно:
(
6.16)
Центробежный момент инерции площади поперечного сечения относительно осей Х и Y (рис. 6.2.) равен:
(6.17)
Осевые и полярные моменты инерции всегда положительны, а центробежный в зависимости от положения сечения относительно осей координат может быть положительным, отрицательным или равным нулю.
Центробежный момент инерции фигуры относительно осей, включающих хотя бы одну ось симметрии, равен нулю.
В самом общем случае переход от любой старой к любой новой системе координат может рассматриваться как два последовательных преобразования:
1) путём параллельного переноса осей координат Х, Y в новое положение X, Y:
(6.18)
(6.19)
(6.20)
где Ixi, Iyi, Ixiyi – моменты инерции относительно центральных осей каждой из простых фигур Fi;
Ix', Iy', Ixy' – моменты инерции относительно новых осей;
ai, bi – соответственно расстояния от старых осей Х и Y до параллельных им новых осей Х и Y, которые в формулы (6.18), (6.19) и (6.20) входят со своими знаками;
2) путём поворота осей на угол α:
(8.21)
(
8.22)
(
8.23)
6.4. Положение главных центральных осей инерции и величина главных моментов инерции
Угол поворота одной из главных осей относительно оси Х можно найти по формуле
(6.24)
Положительный угол α0 откладывается против часовой стрелки, а отрицательный – по ходу.
Значения главных моментов инерции IU, IV можно найти по формуле
(6.25)
Ось максимумов всегда составляет меньший угол с той из осей (Х или Y), относительно которой осевой момент инерции имеет большее значение.
