- •1. Адаптация как результат естественного отбора, относительный характер адаптаций.
- •2. Биологическая концепция вида, ее необходимость для современной теории эволюции. Сравнение с другими известными концепциями вида.
- •3. Видообразование. Сравнение моделей видообразования.
- •4. Генетико-популяционный подход к изучению процесса эволюции.
- •5. Динамика биологического разнообразия в истории развития жизни. Причины и роль глобальных экологических кризисов.
- •6. Доказательства биологической эволюции
- •7. Дрейф генов, закономерность проявления на уровне популяционных частот аллелей
- •8. Естественный отбор, закономерность проявления на уровне популяционных частот аллелей. Генетический груз по Холдейну.
- •9. Закон Харди-Вайнберга и его следствия при наследовании признака, связанного с х-хромосомой, а также полифакториального признака.
- •10. Инбридинг, закономерность проявления на уровне популяционных частот аллелей
- •11. История развития органического мира. Периоды появления основных групп морских и наземных организмов.
- •12. Крупные достижения в области естественных наук, укрепившие эволюционные взгляды.
- •13. Методы изучения процесса эволюции
- •14. Мутации, закономерность проявления на уровне популяционных частот аллелей.
- •15. Мутационная теория Гуго-де-Фриза
- •16. Основные положения «эпигенетической теории эволюции»
- •17. Основные положения синтетической теории эволюции.
- •18. Основные положения теории «нейтральности».
- •19. Основные положения теории «прерывистого равновесия».
- •20. Основные положения теории эволюции Дарвина-Уоллеса и их развитие в рамках «неодарвинизма».
- •21. Основные положения эволюционной теории ж.Б. Ламарка и их развитие в рамках «неоламаркизма».
- •22. Поток генов, закономерность проявления на уровне популяционных частот аллелей.
- •23. Правила и законы эволюции филогенетических групп.
- •24. Пути достижения биологического прогресса.
- •25. Различные определения биологической эволюции
- •26. Сходство и различие в эволюции микроорганизмов, растений и животных.
- •27. Теория номогенеза во взглядах л.С. Берга и а.А. Любищева
- •28. Человек как продукт биологической эволюции
- •29. Эволюция онтогенеза.
- •30. Экологические кризисы в истории жизни на Земле.
- •31. Вклад Алана Тьюринга в теорию морфогенеза.
- •32. Инадаптация и эвадаптация. Адаптационный компромисс.
- •33. Квантовое видообразование.
- •34.Классификационная схема адаптаций по Тимофееву-Ресовскому.
- •35.Молекулярно-генетические свидетельства биологической эволюции человека.
- •36.Одомашнивание, как модель эволюционного процесса.
- •38.Понятие прогресса в вопросах биологической эволюции.
- •39.Предпосылки появления эволюционной теории ч. Дарвина.
- •40. Процесс адаптации с позиции экологической ниши. Адаптационный ландшафт.
- •41.Процесс видообразования в соответствии с теорией эволюции Дарвина-Уоллеса.
- •42.Роль репродуктивной изоляции в эволюции.
- •43.Симпатрическое видообразование.
- •44.Современные взгляды на филогенетическое древо человека.
- •45.Современные подходы к эволюционной систематике организмов.
- •46.Теории (гипотезы) происхождения жизни.
- •47. Теория зародышевой плазмы а. Вейсмана.
- •48.Труднообъяснимые положения теории эволюции Дарвина-Уоллеса.
- •49.Целесообразность выделения «микроэволюции» и «макроэволюции» при изучении процесса эволюции.
- •50. Эволюция биогеохимических процессов.
43.Симпатрическое видообразование.
Связано с расхождением групп особей одного вида и обитающих на одном ареале по экологическим признакам. При этом особи с промежуточными характеристиками оказываются менее приспособленными. Расходящиеся группы формируют новые виды.
Симпатрическое видообразование может протекать несколькими способами. Один из них — возникновение новых видов при быстром изменении кариотипа путём полиплоидизации. Известны группы близких видов, обычно растений, с кратным числом хромосом. Другой способ симпатрического видообразования — гибридизация с последующим удвоением числа хромосом. Сейчас известно немало видов, гибридогенное происхождение и характер генома которых может считаться экспериментально доказанным. Третий способ симпатрического видообразования — возникновение репродуктивной изоляции особей внутри первоначально единой популяции в результате фрагментации или слияния хромосом и других хромосомных перестроек. Этот способ распространён как у растений, так и у животных. Особенностью симпатрического пути видообразования является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Лишь в случае гибридогенного возникновения видов появляется новая видовая форма, отличная от каждой из родительских.
До недавних пор вообще думали, что симпатрического видообразования не бывает. Симпатрическое видообразование было «не в чести» во многом из-за авторитета Эрнста Майра (1904-2005). Это была большая ошибка. Сейчас уже имеется много доказанных случаев.
Вообще-то ясно, что для появления каждого из многих миллионов видов обитающих на планете организмов физических барьеров просто не хватило бы — биосфера недостаточно сегрегирована для этого. Симпатрическое видообразование должно существовать, но было непонятно, каким образом оно может происходить. Предположим, что часть особей в популяции стала чем-то немного отличаться от остальных. Если эти особи не отделены от прочих физическим барьером, то любое отличие, казалось бы, должно быстро «размыться» в результате скрещиваний с неизменившимися сородичами. Полезное отличие станет общим достоянием, вредное исчезнет. В любом случае, вид не разделится на два, если у «немного отличающихся» особей не возникнет эндогамия, т. е. предпочтение себе подобных в качестве брачных партнеров. Как может вознинкуть эндогамия, было не совсем понятно.
В 2006 году был описан случай видообразования, в симпатрическом характере которого трудно усомниться. Речь идет о двух видах рыб — цихлид, живущих в маленьком озере Апойо в Никарагуа. Это круглое озеро диаметром 5 км и глубиной до 200 м представляет собой залитый водой вулканический кратер. Озеро полностью изолировано от других водоемов и образовалось менее 23 тыс. лет назад.
В озере живет два вида цихлид: широко распространенный Amphilophus citrinellus и встречающийся только в этом озере A. zaliosus.
Сравнили последовательности митохондриальной ДНК у 120 рыб обоих видов из оз. Апойо и более 500 представителей A. citrinellus из других озер. Анализ показал, что все рыбы из Апойо, относящиеся к обоим видам, образуют монофилетическую ветвь (т. е. имеют единое происхождение), причем варианты мтДНК из оз. Апойо не встречаются в других озерах. Попросту говоря, это означает, что озеро было заселено единожды, повторных колонизаций и обмена генами с жителями других озер не было, и все живущие ныне в озере рыбы, вероятно, являются потомками одной самки, когда-то попавшей в озеро. И самка эта относилась к виду A. citrinellus.
Анализ ядерных генов подтвердил результаты, основанные на мтДНК. Статистический анализ всей совокупности данных по генетическому разнообразию цихлид из озера Апойо показал, что два вида полностью репродуктивно изолированы (не скрещиваются друг с другом). О том же свидетельствуют и поведенческие эксперименты, показавшие, что эти рыбы безошибочно выбирают себе в качестве брачных партнеров представителей своего вида.
Эти рыбы и внешне достаточно хорошо различаются (т.е. по морфологическому критерию это тоже разные виды). Образ жизни у них тоже разный. A. citrinellus держится вблизи дна, более всеяден, не брезгует крупными водорослями (харовыми) и редко глотает насекомых; A. zaliosus плавает в толще воды, не ест водорослей, зато насекомых очень любит. Всё это говорит о том, что мы имеем дело с бесспорным случаем симпатрического видообразования.
Аллопатрическое (географическое) видообразование. Вызывается разделением ареала вида на несколько изолированных частей. Возникновение географических преград (горных хребтов, морских проливов и пр.) приводит к возникновению изолятов — географически изолированных популяций. При этом на каждую такую часть отбор может действовать по-разному, а эффекты дрейфа генов и мутационного процесса будут явно отличаться. Тогда со временем в изолированных частях будут накапливаться новые генотипы и фенотипы. Особи в разных частях ранее единого ареала могут изменить свою экологическую нишу. При таких исторических процессах степень расхождения групп может достигнуть видового уровня