Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты по линалу (Автосохраненный).docx
Скачиваний:
178
Добавлен:
08.01.2020
Размер:
19.11 Mб
Скачать

22. Линейные операции с геометрическими векторами. Координаты геометрического вектора и его запись с помощью знака суммы. Знак суммирования и его свойства.

23. Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.

В ПРОСТРАНСТВЕ.

Рассмотрим в пространстве прямоугольную систему координат Oxyz. Выделим на координатных осях Ох, Оу и Oz единичные векторы (орты), обозначаемые i , j , k соответственно.

Выберем произвольный вектор а пространства и совместим его начало с началом координат: а=ОМ. Найдем проекции вектора а на координатные оси. Проведем через конец вектора ОМ плоскости, параллельные координатным плоскостям. Точки пересечения этих плоскостей с осями обозначим соответственно через М1 , М2 и Мз. Получим прямоугольный параллелепипед, одной из диагоналей которого является вектор ОМ. Тогда пр ха=|OM 1|, npya = |ОМ2|, прz а=|ОМз|. По определению суммы нескольких векторов находим а = ОМ 1 + M1N + NM. А так как M1N=OM2 , NM =ОМз, то а=ОМ1 + ОМ2+ ОМ  

Обозначим проекции вектора а=ОМ на оси Ох, Оу и Oz соответственно через ах, ау и az, т.е. |OM 1| = ах,|ОМ2| = ау, |ОМ3| = аz. Тогда из равенств получаем a=axi+ayj+az

Эта формула  является основной в векторном исчислении и называется разложением вектора по ортам координатных осей. Числа ах, ау, az называются координатами вектора а, т. е. координаты вектора есть его проекции на соответствующие координатные оси.

НА  ПЛОСКОСТИ

Вектор а =ОМ+ОА. Т.к. ОМ коллинеарен i , а ОА коллинеарен j, то вектор а=ОМ×i + OA×j 

24. Действия с геометрическими векторами в координатной форме.

Пусть даны два вектора и , заданные своими проекциями:

или

или 

Укажем действия над этими векторами.

1.Сложение:

или, что то же

т.е. при сложении двух векторов одноимённые координаты складываются.

2.Вычитание:

или, что то же,

т.е. при вычитании двух векторов одноимённые координаты вычитаются.

3.Умножение вектора на число:

или, что то же

т.е. при умножении вектора на число все координаты умножаются на это число

25. Признак коллинеарности векторов.

Как мы уже отмечали, векторы называются коллинеарными, если они связаны отношением

.Пусть даны векторы . Эти векторы коллинеарны, если координаты векторов связаны отношением

,

то есть, координаты векторов пропорциональны.

26. Скалярное произведение геометрических векторов и его свойства.

Геометрическая интерпретация. Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов умноженного на косинус угла между ними:

a · b = |a| · |b| cos α

Алгебраическая интерпретация. Скалярным произведением двух векторов a и b будет скалярная величина, равная сумме попарного произведения координат векторов a иb.

Формулы скалярного произведения векторов заданных координатами

Формула скалярного произведения векторов для плоских задач

В случае плоской задачи скалярное произведение векторов a = {ax ; ay} и b = {bx ; by} можно найти воспользовавшись следующей формулой:

a · b = ax · bx + ay · by

Формула скалярного произведения векторов для пространственных задач

В случае пространственной задачи скалярное произведение векторов a = {ax ; ay ; az} и b = {bx ; by ; bz} можно найти воспользовавшись следующей формулой:

a · b = ax · bx + ay · by + az · bz

Формула скалярного произведения n -мерных векторов

В случае n-мерного пространства скалярное произведение векторов a = {a1 ; a2 ; ... ; an} и b = {b1 ; b2 ; ... ; bn} можно найти воспользовавшись следующей формулой:

a · b = a1 · b1 + a2 · b2 + ... + an · bn

Свойства скалярного произведения векторов

1)Скалярное произведение вектора самого на себя всегда больше или равно нуля: a · a ≥ 0

2)Скалярное произведение вектора самого на себя равно нулю тогда и только тогда, когда вектор равен нулевому вектору: a · a = 0   <=>   a = 0

3)Скалярное произведение вектора самого на себя равно квадрату его модуля: a · a = |a|2

4)Операция скалярного умножения коммуникативна:

a · b = b · a

5)Если скалярное произведение двух не нулевых векторов равно нулю, то эти вектора ортогональны:

a ≠ 0, b ≠ 0, a · b = 0   <=>   a ┴ b

6)(αa) · b = α(a · b)

7)Операция скалярного умножения дистрибутивна:

(a + b) · c = a · c + b · c