
- •Прямоугольные (декартовы) координаты на прямой, плоскости и в пространстве
- •Расстояние между двумя точками прямой, плоскости и в пространстве.
- •Деление отрезка в заданном отношении. Понятие деления отрезка в данном отношении
- •Формулы деления отрезка в данном отношении на плоскости
- •Формулы координат середины отрезка
- •Полярная система координат. Сферическая система координат.
- •Переход от декартовой к полярной системе координат и обратно.
- •Преобразование координат для прямоугольной системы координат методом сдвига и поворота.
- •Окружность. Общее и каноническое уравнения окружности.
- •Эллипс. Каноническое уравнение эллипса и его свойства.
- •Линейные операции с геометрическими векторами. Координаты геометрического вектора и его запись с помощью знака суммы. Знак суммирования и его свойства.
- •Разложение произвольного вектора по ортам координатных осей на плоскости и в пространстве.
- •Действия с геометрическими векторами в координатной форме.
- •Признак коллинеарности векторов.
- •Скалярное произведение геометрических векторов и его свойства.
- •Вычисление скалярного произведения векторов через их координаты. Длина вектора. Угол между векторами.
- •Общее уравнение прямой на плоскости в представлении геометрических векторов.
- •Каноническое и параметрическое уравнения прямой в пространстве.
- •Общее уравнение плоскости в пространстве.
- •Решение неравенств на плоскости.
- •Расстояние от точки до плоскости.
- •Векторное произведение векторов и его свойства.
- •Формулы вычисления векторного произведения векторов
- •Свойства векторного произведения векторов
- •Запись векторного произведения векторов с помощью определителя.
- •Смешанное произведение векторов.
- •Решение систем линейных уравнений с помощью векторного произведения.
- •Матрицы и их классификация. Действия с матрицами. Экономические примеры.
- •Определитель 1-го, 2-го и третьего порядков. Правило Саррюса и «звёздочки».
- •Минор и алгебраическое дополнение элемента определителя. Определитель произвольного порядка.
- •Свойства определителя. Терема об определителе произведения квадратных матриц.
- •Обратная матрица. Теорема существования и единственности обратной матрицы.
- •Минор матрицы. Базисный минор. Ранг матрицы. Нахождение ранга матрицы с помощью элементарных преобразований.
- •Транспонирование и его свойства.
- •Система линейных уравнений и её решение.
- •Метод Гаусса для решений совместной системы линейных уравнений.
- •Прямой ход.
- •Обратный ход.
- •Замечания:
- •Однородная, неоднородная, совместная, несовместная, определенная и неопределенная система. Матричная запись системы линейных уравнений.
- •Теорема о решении однородной системы линейных уравнений.
- •Теорема о числе решений совместной системы линейных уравнений.??????????
- •Теорема Кронекера-Капелли. Исследование систем линейных уравнений на совместность.
- •Решение квадратной системы линейных уравнений с помощью обратной матрицы.
- •Теорема условия существования обратной матрицы
- •Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.
- •Алгоритм нахождения обратной матрицы
- •Формулы Крамера.
- •Линейное (векторное) пространство. Линейное подпространство.
- •Единтс-ный ему противопол.
- •Лин.Подпр-во.
- •Базис линейного пространства. Примеры.
- •Теорема о разложении вектора по базису.
- •Линейная оболочка векторов.
- •Векторное представление системы линейных уравнений.
- •Теорема Кронекера-Капелли.
- •Критерий линейной зависимости векторов в пространстве Rn.
- •Теорема. (Необходимое и достаточное условие линейной зависимости системы векторов.)
- •Евклидовое пространство.
- •Нормируемое пространство.
- •Ортогональное дополнение и его свойства.
- •Собственные числа и собственные векторы квадратной матрицы. Характеристическое уравнение.
- •Линейная функция. Билинейная форма. Квадратичная форма.
- •Изотропный вектор и знакоопределённость квадратичной формы. Матрица квадратичной формы. Закон инерции квадратичных форм. Критерий знакоопределённости квадратичной формы.
- •Линейная балансовая модель.
- •Модель международной торговли.
- •Линейные операторы как отображения. Образ и ядро линейного оператора.
- •Матрица линейного оператора
- •Образ и ядро линейного оператора
- •Взаимно однозначные отображения.
- •Произведение операторов. Обратный оператор.
- •Теорема о представлении оператора в виде матрицы.
- •Произведение линейных отображений.
-
Определитель 1-го, 2-го и третьего порядков. Правило Саррюса и «звёздочки».
-
Определителем матрицы называется некоторая математическая функция элементов квадратной матрицы, результатом которой является число. Обозначение:
— определитель 3- го порядка (т.к. матрица размера 3 на 3) матрицы А. Замечание: В этом, якобы простом, определении определителя ( звучит как тавтология) говориться, что с элементами матрицы нужно что то сделать ( умножить, сложить, разделить и т.д.) и получится значение определителя этой матрицы. Однако не сказано. Что же все-таки надо с ними сделать.
-
Вычисление определителей первого порядка. Матрица размера
это просто число. Определителем такой матрицы является само это число. Вычисление определителей второго порядка. Определитель второго порядка (матрицы размера 2 на 2) вычисляется по правилу:
Запомнить просто: произведение элементов, стоящих на главной диагонали, минус произведение элементов, стоящих на побочной.
-
Вычисление определителей третьего порядка. Определитель третьего порядка вычисляется по правилу: Запомнить порядок сомножителей, конечно же, очень трудно, если не знать визуального представления этого правила, которое называется правило треугольников:
Правило Саррюса
-
Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком "плюс"; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком "минус":
-
-
-
-
-
-
Минор и алгебраическое дополнение элемента определителя. Определитель произвольного порядка.
-
Определителем второго порядка, соответствующим таблице элементов
-
-
называется число a1 b2 - a2 b1. Определитель второго порядка обозначается так:
-
-
Таким образом,
-
Определитель третьего порядка, соответствующий таблице элементов
определяется равенством
-
Минором данного элемента определителя третьего порядка называется определитель второго порядка, который получится, если в исходном определителе вычеркнуть строку и столбец, содержащие данный элемент. Алгебраическим дополнением данного элемента называется его минор, умноженный на ( - 1)k, где k - сумма номеров строки и столбца, содержащих данный элемент. Aij = (-1)i + j · Mij Таким образом, знак, который при этом приписывается минору соответствующего элемента определителя, определяется следующей таблицей:
В приведенном выше равенстве, выражающем определитель третьего порядка, в правой части стоит сумма произведений элементов первой строки определителя на их алгебраические дополнения.
-
Свойства определителя. Терема об определителе произведения квадратных матриц.
-
Квадратной матрице
-го порядка ставиться в соответствие число, называемоеопределителем матрицы или детерминантом.
-
При транспонировании квадратной матрицы её определитель не меняется:
-
Общий множитель в строке можно выносить за знак определителя.
-
То есть, если квадратная матрица
-го порядка умножается на некоторое ненулевое число
, то определитель полученной матрицы равен произведению определителя исходной матрицы
на число
в степени, равной порядку матриц.
-
Если каждый элемент в какой-то строке определителя равен сумме двух слагаемых, то исходный определитель равен сумме двух определителей, в которых вместо этой строки стоят первые и вторые слагаемые соответственно, а остальные строки совпадают с исходным определителем.
-
Если две строки определителя поменять местами, то определитель поменяет знак.
-
Определитель с двумя равными строками равен нулю.
-
Определитель с двумя пропорциональными строками равен нулю.