
- •Министерство образования рф
- •Лекция 1 Заполнение зон электронами. Проводники, диэлектрики и полупроводники
- •Собственные полупроводники
- •Примесные полупроводники
- •Лекция 2 Принципы работы полупроводниковых приборов и их применение Диоды
- •Прямое включение: Обратное включение:
- •Стабилитроны
- •Варикапы
- •Светодиоды
- •Фоторезисторы
- •Люкс-амперная характеристика фоторезистора Фотоэлементы с p-n-переходом
- •Фотодиоды
- •Упрощенная структура фотодиода и его условное графическое обозначение
- •Термоэлектрогенераторы и термоэлектрохолодильники
- •Эффект Холла
- •Тензорезисторы
- •Лекция 3 Механические свойства материалов
- •Диаграмма растяжения
- •Пластичность и хрупкость. Твердость
- •Кривые растяжения материалов: а-хрупкого, б-пластичного
- •Способы измерения твёрдости
- •Для каждого материала существует установленная госТом сила вдавливания f
- •Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
- •Влияние энергии химических связей на свойства материалов
- •Теоретическая и реальная прочности кристаллов на сдвиг
- •Лекция 4 Кристаллизация металлов
- •Самопроизвольная кристаллизация
- •Кривые охлаждения металла
- •Изменение скорости образования зародышей (с. З.) и скорости роста кристаллов (с. Р.) в зависимости от степени переохлаждения
- •Несамопроизвольная кристаллизация
- •Получение монокристаллов
- •Схемы установок для выращивания монокристаллов
- •Аморфное состояние металлов
- •Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях Полиморфизм
- •Лекция 5 Влияние нагрева на структуру и свойства металлов
- •Холодная и горячая деформации
- •Термическая обработка металлов и сплавов Определения и классификация
- •Нагрев для снятия остаточных напряжений
- •Рекристаллизационный отжиг
- •Диффузионный отжиг (гомогенизация)
- •Лекция 6 Термохимическая обработка Назначение и виды химико-термической обработки
- •Цементация
- •Цианирование и нитроцементация
- •Азотирование
- •Диффузионная металлизация
- •Алитирование (Al)
- •Хромирование (Cr)
- •Борирование (b)
- •Силицирование (Si)
- •Поверхностно-пластическая деформация
- •Литье под давлением
- •Центробежное литье
- •Литье под низким давлением
- •Литье выжиманием
- •Лекция 8 Конструкционные материалы Общие требования, предъявляемые к конструкционным материалам
- •Прочность конструкционных материалов и критерии ее оценки
- •Классификация конструкционных материалов
- •Стали, обеспечивающие жесткость, статическую и циклическую прочности
- •Классификация конструкционных сталей
- •Влияние углерода и постоянных примесей на свойства стали
- •Диаграмма состояния железоуглеродистых сплавов
- •Превращения в сплавах системы железо-цементит
- •Диаграмма состояния Fe-Fe3c
- •Характерные точки диаграммы состояния железо-цементит
- •Углеродистые стали
- •Легированные стали
- •Лекция 9 Цветные сплавы Медные сплавы
- •Свойства промышленных латуней, обрабатываемых давлением
- •Сплавы на основе алюминия
- •Механические свойства алюминия
- •Сплавы на основе магния
- •Титан и сплавы на его основе
- •Механические свойства иодидного и технического титана
- •Лекция 10 Органические полимеры
- •Дополнительные компоненты полимерных композиций
- •Неполярные и слабополярные термопласты
- •Полярные термопласты
- •Термореактивные полимеры
- •Слоистые пластмассы
- •Металлопласты
- •Лекция 11 Неорганические материалы
- •Кристаллическая решетка графита
- •Неорганическое стекло
- •Ситаллы
- •Керамика
- •Лекция 12 Композиционные материалы Композиционные материалы с металлической матрицей
- •Композиционные материалы с неметаллической матрицей
- •Бороволокниты
- •Органоволокниты
- •Список литературы
Пластичность и хрупкость. Твердость
Способность материала получать большие остаточные деформации, не разрушаясь, носит название пластичности. Свойство пластичности имеет решающее значение для таких технологических операций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение δ при разрыве. Чем больше δ, тем более пластичным считается материал. К числу весьма пластичных материалов относятся отожженная медь, алюминий, латунь, малоуглеродистая сталь и др. Менее пластичными являются дюраль и бронза. К числу слабо пластичных материалов относятся многие легированные стали.
Противоположным свойству пластичности является свойство хрупкости, т. е. способность материала разрушаться без образования заметных остаточных деформаций. Материалы, обладающие этим свойством, называются хрупкими. Для таких материалов величина удлинения при разрыве не превышает 2—5%, а в ряде случаев измеряется долями процента. К хрупким материалам относятся чугун, высокоуглеродистая инструментальная сталь, стекло, кирпич, камни и др. Диаграмма растяжения хрупких материалов не имеет площадки текучести и зоны упрочнения.
Кривые растяжения материалов: а-хрупкого, б-пластичного
Здесь, как и для растяжения, обнаруживается площадка текучести с последующим переходом к зоне упрочнения. В дальнейшем, однако, нагрузка не падает, как при растяжении, а резко возрастает. Происходит это в результате того, что площадь поперечного сечения сжатого образца увеличивается; сам образец вследствие трения на торцах принимает бочкообразную форму. Довести образец пластического материала до разрушения практически не удается. Испытуемый цилиндр сжимается в тонкий диск и дальнейшее испытание ограничивается возможностями машины. Поэтому предел прочности при сжатии для такого рода материалов найден быть не может.
Иначе ведут себя при испытании на сжатие хрупкие материалы. Диаграмма сжатия этих материалов сохраняет качественные особенности диаграммы растяжения. Предел прочности хрупкого материала при сжатии определяется так же, как и при растяжении. Разрушение образца происходит с образованием трещин по наклонным или продольным плоскостям.
Сопоставление предела прочности хрупких материалов при растяжении с пределом прочности при сжатии показывает, что эти материалы обладают, как правило, более высокими прочностными показателями при сжатии, нежели при растяжении. Существуют материалы, способные воспринимать при растяжении большие нагрузки, чем при сжатии. Это обычно материалы, имеющие волокнистую структуру, — дерево и некоторые типы пластмасс. Этим свойством обладают и некоторые металлы, например магний.
Способы измерения твёрдости
Под твердостью понимается способность материала противодействовать механическому проникновению в него посторонних тел. Такое определение твердости повторяет, по существу, определение свойств прочности. В материале при вдавливании в него острого предмета возникают местные пластические деформации, сопровождающиеся при дальнейшем увеличении сил местным разрушением. Поэтому показатель твердости связан с показателями прочности и пластичности и зависит от конкретных условий ведения испытания.
Наиболее широкое распространение получили пробы по Бринелю и по Роквеллу. В первом случае в поверхность исследуемой детали вдавливается стальной шарик диаметром 10 мм, во втором — алмазный острый наконечник. По обмеру полученного отпечатка судят о твердости материала. Испытательная лаборатория обычно располагает составленной путем экспериментов переводной таблицей, при помощи которой можно приближенно по показателю твердости определить предел прочности материала. Таким образом, в результате пробы на твердость удается определить прочностные показатели материала, не разрушая детали.