
- •Оглавление
- •1. Магний и его сплавы
- •1.1. Свойства магния и его взаимодействие с легирующими элементами
- •1.2. Термическая обработка магниевых сплавов
- •1.3. Термомеханическая обработка магниевых сплавов
- •1.4. Классификация магниевых сплавов
- •1.5. Деформируемые магниевые сплавы
- •1.6. Литейные магниевые сплавы
- •1.7. Применение магниевых сплавов
- •2. Бериллий и его сплавы
- •2.1. Свойства бериллия
- •2.2. Получение полуфабрикатов
- •2.3. Сплавы бериллия
- •2.4. Применение бериллия и его сплавов
- •3. Алюминий и его сплавы
- •3.1. Классификация алюминиевых сплавов
- •3.2. Деформируемые алюминиевые сплавы
- •3.2.1. Нетермоупрочняемые сплавы
- •3.2.2. Термоупрочняемые сплавы
- •3.3. Литейные алюминиевые сплавы
- •3.4. Сплавы, получаемые методом порошковой металлургии
- •3.5. Новые сверхлегкие сплавы
- •4. Титановые сплавы
- •4.1. Классификация титановых сплавов
- •4.2. Титановые α- и псевдо-α сплавы
- •5. Никель и его сплавы
- •5.1. Классификация и маркировка никелевых сплавов
- •5.2. Жаростойкие никелевые сплавы
- •5.3. Жаропрочные сплавы для лопаток газовых турбин
- •5.4. Порошковые жаропрочные никелевые сплавы
- •6. Сплавы на основе интерметаллидов
- •6.1. Общая характеристика интерметаллидов
- •6.2. Сплавы на основе алюминидов титана
- •6.3. Сплавы на основе алюминидов никеля
- •6.4. Сплавы с эффектом памяти формы
- •6.5. Применение сплавов с эффектом памяти формы
- •7. Композиционные материалы
- •7.1. Общие представления о композитах и их классификация.
- •7.2. Волокнистые армирующие элементы
- •7.2.1. Непрерывные волокна
- •7.2.2. Коротковолокнистая арматура
- •7.3. Металлические композиционные материалы
- •7.4. Композиционные материалы на неметаллической основе
- •8. Неметаллические материалы (пластические массы и резины)
- •8.1. Общие сведения о пластмассах
- •8.2. Характеристика смол
- •8.3. Термопластичные литьевые пластмассы – термопласты
- •8.4. Химостойкие и уплотнительные пластмассы
- •8.5. Пластмассы для остекления летательных аппаратов
- •8.6. Газонаполненные пластмассы
- •8.7. Старение полимерных материалов в процессе эксплуатации
- •8.8. Резины и их свойства
- •8.9. Получение и свойства каучуков
- •8.10. Получение и применение резины
- •8.11. Старение резины
- •9. Техническая керамика
- •9.1. Физикохимия исходных компонентов
- •9.1.1. Оксидные системы
- •9.1.2. Бескислородные тугоплавкие соединения и сиалоны
- •9.2. Перспективные технологии получения керамики
- •9.2.1. Процессы с участием реакций в газовой и жидкой фазах
- •9.3. Конструирование границ зерен
- •9.4. Обработка давлением в режиме сверхпластичности
- •10. Наноструктурные материалы
- •10.1.Технология получения и свойства нанопорошков
- •10.2. Объемные наноструктурные материалы
- •10.3. Особенности модели наноструктур
- •10.4. Необычные свойства наноструктурных материалов и области их применения
- •Контрольные вопросы
- •Список литературы
- •450000, Уфа-центр, ул. К. Маркса, 12
9.4. Обработка давлением в режиме сверхпластичности
Проблема формоизменения при горячей обработке давлением керамических материалов до недавнего времени не рассматривалась столь же серьезно, как для металлических материалов. Причина этого в том, что в керамических материалах величины плотности подвижных дислокаций и их подвижности на несколько порядков меньше, чем в металлах. Пластичность, обусловленная диффузионными процессами, в керамических материалах проявляется лишь при высоких температурах. Существует, по крайней мере, еще одна причина, из-за которой большие пластические деформации в керамике труднодостижимы. Она заключается в низкой поверхностной энергии границ зерен в керамических поликристаллах, что обусловливает слабую когезионную прочность границ и склонность к межзеренному разрушению.
Тем не менее, проводились интенсивные исследования возможностей горячей обработки давлением керамических материалов, такой, как экструзия, прокатка, ковка, поскольку решение данной проблемы позволило бы в значительной степени снизить стоимость изделий из-за устранения дорогостоящей операции механической обработки. Успех стал возможным с открытием эффекта сверхпластичности керамики, то есть ее способности проявлять при определенных условиях сверхвысокие деформации при растяжении.
Сверхпластичность керамики может быть обусловлена ультрадисперсной (субмикронной или нанокристаллической) структурой, в которой имеются высокоугловые подвижные границы зерен (структурная сверхпластичность), либо структурными напряжениями, возникающими, например, по достижении температуры фазовой нестабильности или из-за анизотропии термического расширения фаз (трансформационная сверхпластичность).
Эффект сверхпластичности при растяжении установлен для ряда однофазных и композиционных керамических материалов. Например, заметная пластическая деформация тетрагонального диоксида циркония начинается при 1000 °С, но только при температурах выше 1350 °С достигаются относительные удлинения более 100 %.
Уменьшение размера зерна в керамике до уровня 10…100 нм может обеспечить высокую скорость пластической деформации уже при комнатной температуре. Экспериментально это продемонстрировано на образцах TiO2-керамики (полученной окислением титана). Однако, проблемой является термическая нестабильность столь ультрадисперсных структур.
На практике явление сверхпластичности использовали при экструзии прутков из частично стабилизированного диоксида циркония (размер зерна 0,23 мкм) при температуре 1500 °С и степени вытяжки 8:1. С помощью карбидокремниевого инструмента производили гибку листов циркониевой керамики при температуре 1450 °С, а из ZrO2-керамики с 2 мол.% Y2O3 и 0,3 мол.% CuO выпрессовывали при 1150 °С изделия полусферической формы. Добавка CuO обеспечивала снижение температуры плавления зернограничной стеклофазы и, тем самым, температуры проявления эффекта сверхпластичности. Известны также данные о формоизменении изделий из Al2O3-керамики, в частности, экструзией, при температуре 1600 °С, а также о горячей штамповке керамики в системе ZrO2–Al2O3 при 1500 °С.
Поведение керамики при обработке в режиме сверхпластичности, в общем, подобно поведению металлов, однако в керамике эффект проявляется при меньших на порядок размерах зерна (менее 1 мкм) и при более низких скоростях деформирования (< 10-4с-1). Из-за термодинамической неустойчивости ультрадисперсных структур в процессе сверхпластической деформации происходит рост зерна, сопровождающийся потерей высоких деформационных характеристик керамики. Поэтому важнейшей задачей является стабилизация границ зерен в материалах с ультрадисперсной структурой, что, вероятно, может быть достигнуто в нанокомпозиционных материалах, компоненты которых распределены равномерно на уровне наноструктуры.
Резюме. Общая тенденция развития технологии создания и производства керамических материалов в настоящее время направлена на создание и применение нанокерамики. Основными направлениями разработок являются: а) химический синтез высокочистого сырья, в том числе ультра- и нанодисперсных порошков оксидов, карбидов, нитридов, а также армирующих элементов - волокон, нитевидных кристаллов; б) эффективные технологии формования, спекания, соединения и механической обработки изделий.