
- •Волоконно-оптические сети
- •1. Основные сведения о ВОЛС
- •1.1. Общие положения
- •Преимущества ВОЛС
- •Недостатки ВОЛС
- •Типовая схема системы волоконно-оптической связи
- •1.2. Основные компоненты ВОЛС
- •Литература к предисловию и главе 1
- •2. Оптическое волокно
- •2.1. Типы оптических волокон
- •Многомодовые градиентные волокна
- •Одномодовые волокна
- •2.2. Распространение света по волокну
- •Геометрические параметры волокна
- •Типы мод
- •Длина волны отсечки (cutoff wavelength)
- •Затухание
- •Потенциальные ресурсы волокна и волновое уплотнение
- •Дисперсия и полоса пропускания
- •Межмодовая дисперсия
- •Хроматическая дисперсия
- •Поляризационная модовая дисперсия
- •2.3. Характеристики поставляемых волокон
- •Градиентное многомодовое волокно
- •Функциональные свойства одномодовых волокон
- •Литература к главе 2
- •3. Пассивные оптические компоненты
- •3.1. Разъемные соединители
- •Типы конструкций
- •Вносимые потери
- •Надежность, механические, климатические и другие воздействия
- •Стандарты соединителей
- •Оптические шнуры
- •Адаптеры быстрого оконцевания
- •Механический сплайс (МС)
- •Производители и поставщики
- •3.2. Сварное соединение волокон
- •Непрерывное соединение
- •Допускается заводская прединсталляция
- •Количественные оценки качества сварки
- •3.3. Оптические разветвители
- •Древовидный разветвитель (tree coupler)
- •Звездообразный разветвитель (star coupler)
- •Ответвитель (tap)
- •Параметры, характеризующие разветвитель
- •3.4. Устройства волнового уплотнения WDM
- •Основные технические параметры WDM фильтров
- •Широкозонные и узкозонные WDM фильтры
- •3.5. Оптические изоляторы
- •Вращение плоскости поляризации
- •Принцип действия оптического изолятора
- •Технические параметры
- •3.6. Другие специальные пассивные компоненты ВОЛС
- •Аттенюаторы
- •Оптические переключатели
- •Соединительные герметичные муфты
- •Терминирование ВОК
- •Оптический узел
- •Оптические распределительные устройства (ОРУ)
- •Оптические кроссовые устройства (ОКУ)
- •Интерконнект и кросс-коннект
- •Принципы построения оптического кроссового устройства
- •Обслуживание ОКУ
- •Оптические кроссы высокой и сверхвысокой плотности
- •Характеристики
- •Примеры инсталляции кроссового оборудования
- •Литература к главе 3
- •4. Электронные компоненты систем оптической связи
- •4.1. Передающие оптоэлектронные модули
- •Типы и характеристики источников излучения
- •Светоизлучающие диоды
- •Лазерные диоды
- •Другие характеристики
- •Основные элементы ПОМ
- •4.2. Приемные оптоэлектронные модули
- •Основные элементы приемных оптоэлектронных модулей
- •Принципы работы фотоприемника
- •Технические характеристики фотоприемников
- •Лавинный фотодиод
- •Электронные элементы ПРОМ
- •4.3. Повторители и оптические усилители
- •Проблема расстояния
- •Типы ретрансляторов
- •Повторители для цифровых линий связи
- •Конструкция
- •Оптические усилители
- •4.4. Разновидности усилителей EDFA
- •Усилители на кремниевой основе
- •Усилители на фтор-цирконатной основе
- •Литература к главе 4
- •5. Сети передачи данных
- •5.1. Мультиплексирование
- •Частотное мультиплексирование FDM
- •Синхронное временное мультиплексирование
- •Статистическое (асинхронное) временное мультиплексирование
- •Инверсное мультиплексирование
- •5.2. Сети с коммутацией каналов и пакетов
- •Коммутация каналов
- •Коммутация пакетов
- •Коммутация каналов на разных скоростях и сети ISDN
- •Протокол Х.25
- •Ретрансляция кадров Frame Relay
- •Ретрансляция ячеек Cell Relay
- •Эволюция концепций передачи информации с появлением волокна
- •5.3. Эталонная модель OSI
- •Стандарты IEEE 802
- •Литература к главе 5
- •6. Сети FDDI
- •6.1. Принцип действия
- •6.2. Составляющие стандарта FDDI
- •6.3. Типы устройств и портов
- •Топологии сетей FDDI
- •6.4. Оптический обходной переключатель
- •Подключение к сети через OBS
- •Устройство OBS
- •6.5. Кабельная система и уровень PMD
- •Стандарты MMF-PMD, SMF-PMD и TP-PMD
- •Функция регистрации сигнала уровня PMD
- •Оптические соединители
- •Сравнения оптического волокна и витой пары
- •6.6. Уровень PHY
- •Синхронизация часов
- •Кодирование и декодирование данных
- •Особенности кодирования при передаче по витой паре
- •Эластичный буфер
- •Функция сглаживания
- •Фильтр повторений
- •6.7. Уровень MAC
- •Маркеры и кадры
- •Временной анализ процессов передачи маркера и кадров
- •Мониторинг и инициализация кольца
- •6.8. Обзор уровня SMT
- •Управление соединениями СМТ
- •Управление кольцом RMT
- •Управление, основанное на передаче кадров FВМ
- •Когда рекомендуется использовать технологию FDDI
- •Поставляемое оборудование
- •Литература к главе 6
- •7. Сети Ethernet/Fast Ethernet/Gigabit Ethernet
- •7.1. Сети Ethernet
- •Формат кадра Ethernet
- •Основные варианты алгоритмов случайного доступа к среде
- •Протокол CSMA/CD
- •Спецификации физического уровня IEEE 802.3 и типы портов
- •7.2. Основные типы устройств Ethernet
- •AUI интерфейс и трансиверы Ethernet
- •Рабочая станция, сетевая карта
- •Повторитель (концентратор)
- •Коммутатор
- •Расчет параметров коллизионного домена Ethernet (Модель 1)
- •Расчет параметров коллизионного домена Ethernet (Модель 2)
- •7.4. Сети Fast Ethernet
- •Архитектура стандарта Fast Ethernet
- •Физические интерфейсы Fast Ethernet
- •Типы устройств Fast Ethernet
- •Устройство/кабельный сегмент
- •7.6. Дуплексный Ethernet
- •7.7. Сети Gigabit Ethernet (стандарты IEEE 802.3z и 802.3ab)
- •Архитектура стандарта Gigabit Ethernet
- •Уровень MAC
- •Расширение носителя
- •Пакетная перегруженность
- •Типы устройств
- •7.8. Миграция Ethernet к магистральным сетям
- •Литература к главе 7
- •8. Полностью оптические сети
- •8.1. Основные определения и элементы
- •8.2. Плотное волновое мультиплексирование
- •Мультиплексоры DWDM
- •Пространственное разделение каналов и стандартизация DWDM
- •8.3. Применение оптических усилителей EDFA
- •Технические параметры усилителей EDFA
- •Классификация усилителей EDFA по способам применения
- •Расчет числа каскадов линейных усилителей EDFA
- •8.4. Оптимизация WDM/TDM
- •Протяженность линии
- •Трибные интерфейсы
- •Существующие архитектуры SDH
- •Миграция к оптическому уровню
- •8.5. Оптические коммутаторы
- •Разветвитель-коммутатор 2х2 (элемент 2х2)
- •Оптические коммутаторы nхn
- •8.6. Волновые конвертеры
- •8.7. Классификация полностью оптических сетей
- •Простая многоволновая линия связи SMWL
- •Параметры многоволновых мультиплексных линий связи
- •8.8. AON с коммутацией каналов
- •Широковещательная AON
- •AON с пассивной волновой маршрутизацией
- •AON с активной волновой маршрутизацией
- •8.9. AON с коммутацией пакетов
- •Сеть с последовательной битовой коммутацией
- •Сеть с параллельной битовой коммутацией
- •8.10. Архитектура AON
- •8.11. Прототипы и коммерческие реализации AON
- •Литература к главе 8
- •9. Сети абонентского доступа
- •9.1. Концепции развития абонентских сетей
- •Традиционная информационная абонентская сеть
- •Гибридная волоконно-коаксиальная сеть
- •Концепция "волокно в монтажный шкаф"
- •Концепция "волокно в квартиру"
- •9.2. Сети HFC
- •Спецификации физического уровня стандарта 802.14
- •Частотное распределение потоков
- •Распределение восходящих потоков
- •Распределение нисходящих потоков
- •Физические особенности восходящих и нисходящих потоков
- •Параметры
- •9.3. Платформа доступа Homeworx
- •Предоставляемые услуги
- •Основные элементы архитектуры
- •Структура потоков и транспортные характеристики Homeworx
- •Система спектрального смещения
- •Сценарии развертывания платформы Homeworx
- •9.4. Межстудийный телевизионный обмен и система DV6000
- •Оптические параметры
- •Параметры аналогового видеоканала
- •Дифференциальная фаза, град
- •Параметры звукового канала
- •Литература к главе 9

Рис. 8.22. AON с коммутацией каналов: центральный узел сети выполнен на основе волновых конвертеров
8.9. AON с коммутацией пакетов
Рассмотренные в предыдущем параграфе полностью оптические сети с коммутацией каналов позволяют строить оптические магистрали, прозрачные к использованию любых приложений со стороны оконечных сетевых узлов. Но наряду с этим достоинством, отмечается и один их недостаток - сети с коммутацией каналов не могут работать с "взрывным графиком" от локальных сетей передачи данных. В этой связи внедрение полностью оптических сетей с коммутацией пакетов было бы идеальным, поскольку они позволяют значительно эффективней использовать отведенную полосу пропускания волоконнооптических каналов связи.
Особенности AON с коммутацией пакетов
−Коммутация пакетов в AON представляет совершенно новое направление развития сетей. Это означает, что должны быть разработаны совершенно новые схемы маршрутизации, новые архитектуры, ориентированные на технологию AON.
−Все схемы маршрутизации оптических потоков должны быть единообразны для всей AON с коммутацией пакетов. Это требование для сетей с коммутацией каналов было более мягким и ограничивалось, в основном, только наличием единого частотного плана.
−В технологиях полностью оптических сетей одной из сложных задач считается создание оптических буферов. Поэтому предпочтение будет отдаваться оптическим пакетным коммутаторам, использующим технологию коммутации без буферизации (cut through).
−Новые архитектуры должны учитывать специфические особенности каждого оптического домена, чтобы выгодно использовать их для упрощения конструкции.
Далее рассмотрены два метода пакетной коммутации в AON: последовательная битовая и параллельная битовая коммутация пакетов.
Сеть с последовательной битовой коммутацией
Оптическая последовательная битовая коммутация BSPS (bit-sequential packet switching) - это метод прямого управления электроникой коммутационных элементов, в отличии от методов, используемых в сетях с коммутацией каналов. При использовании BSPS заголовок пакета в канале взятой длины волны кодируется последовательностью из р бинарных битов (битовая 1 определяется наличием оптического сигнал, а битовый 0 - его отсутствием). Эти биты устанавливают коммутатор в надлежащее состояние, позволяя следующему за заголовком телу пакета свободно идти через коммутатор к соответствующему выходному полюсу. Поскольку коммутатор прозрачен к телу пакета, то такая сеть сохраняет название полностью оптической сети. Для заголовка из р битов существует 2Р различных адресов узлов сети. Волновое мультиплексирование позволяет значительно увеличить передающую емкость, но приводит к дополнительному усложнению. Прежде, чем выполнить пакетную коммутацию каналов, необходимо предварительно демультиплексировать сложный сигнал, а на выходе коммутаторов - повторно мультиплексировать соответствующие выходные симплексные каналы.
Самомаршрутизирующаяся сеть с волновой адресацией SWANET (Selfrouted Wavelength-Addressable NETwork) является улучшением бинарной BSPS
архитектуры [30], SWANET использует преимущества BSPS и WDM, в результате чего значительно увеличивается допустимое число различных адресов, устанавливаемых битами заголовков пакетов (рис. 8,23), SWANET имеет аналогичную BSPS структуру пакета. Заголовок, за которым следует поле данных, кодируется последовательностью из р битов, охватывая сразу несколько волновых каналов. Заголовок и поле данных используют один и тот же набор длин волн. Если число длин волн k, то каждый бит заголовка представляется единицей (есть сигнал) на одной из длин волн, в то время как на остальных k-1 каналах сигнала в это время нет. Таким образом, полное число различных конфигураций заголовка (максимальное число оконечных узлов сети) составляет kР. Для требуемой коммутации всего мультиплексного канала коммутатор устанавливает биты заголовка в соответствующее состояние. Завершение передачи пакета происходит посредством передачи сигнала "Сброс" на специальной длине волны, выделенной исключительно для этой цели. Поскольку сеть прозрачна по отношению к формату поля данных, то это поле может охватывать как одну интегрированную многоволновую передачу, так и множество не связанных между собой передач по индивидуальным каналам. В первом случае необходима синхронизация между полями данных различных каналов, во втором - такая синхронизация необязательна. Ограничением SWANET являются дисперсия и поперечные помехи.

Рис. 8.23. Структура пакета в сети SWANET [30]
Сеть с параллельной битовой коммутацией
Две различные техники кодирования предложены для реализации сетей с
параллельной битовой коммутацией BPPS (bit-parallel packet switching): техника
мультиплексирования под-несущих SCM (sub-carrier multiplexing) и техника многоволновой BPPS. Обе техники используют отдельные каналы в одном и том же волокне для передачи данных и собственно заголовка, на основании которого происходит переключение состояний коммутаторов. Заголовок пакета передается теперь не последовательно, когда он предшествовал передаче поля данных пакета,
апараллельно с данными, что позволяет увеличить пропускную способность.
Втехнике SCM данные и заголовок кодируются как две различные поднесущие оптического носителя и далее передаются одновременно (рис. 8.24 а). SCM позволяет эффективно использовать имеющийся спектр за счет ограничений битовой скорости, которая должна быть меньше, чем частота поднесущей. Таким образом, техника SCM полезна когда весь спектр сигнала данных ограничен, т. е. битовая скорость данных не очень высока.
SCM имеет ряд ограничений применительно к полностью оптическим сетям. Главное из них связано с невозможностью избежать сложных электронных преобразований поднесущих заголовка и данных в коммутаторе, так как перед началом коммутации данные и заголовок должны быть демультиплексированы. Второе ограничение связано с характером распространения сложного сигнала по волокну. Поскольку заголовок и данные мультиплексированы в канал одной и той же несущей частоты, то передатчик, имеющий ограниченные ресурсы, должен обеспечить достаточную мощность для каждого сигнала, что уменьшает мощность сигналов по отдельности.
Модификацией SCM является метод, при котором данные передаются на основном носителе, а заголовок мультиплексируется на поднесущую. В этой технике частота поднесущей не ограничивает битовую скорость передачи данных. Поскольку заголовок не требует высокой битовой скорости передачи, то для него предельное соотношение сигнал/шум может быть значительно ниже, что допускает без ущерба большее затухание сигнала в волоконно-оптической линии. Данный метод демонстрировался для скорости передачи данных 2,5 Гбит/с и для заголовка 40 Мбит/с, который мультиплексировался на поднесущую шириной 3
ГГц [31].
Многоволновая параллельная битовая коммутация - это техника кодирования, при которой для данных и для заголовка приписываются различные наборы длин волн [32]. В отличие от традиционного волнового