Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Волоконно-оптические сети - Р.Р. Убайдуллаев.pdf
Скачиваний:
692
Добавлен:
24.05.2014
Размер:
17.59 Mб
Скачать

светодиодам по времени наработки на отказ, которое составляет до 50000 часов и более (5-8 лет).

Основные элементы ПОМ

Для организации передачи оптических сигналов не достаточно иметь только источник излучения. В любой конструкции ПОМ есть специальный держатель (housing), который позволяет закрепить и защитить составные элементы передатчика; источник излучения, узел электрического интерфейса и место сопряжения с волокном. Иногда требуются дополнительные внутренние элементы для оптимального подсоединения волокна. Важным элементом лазерных диодов является цепь тока накачки, и система контроля температуры. Для сложных лазерных систем добавляют выходной мониторинг оптического сигнала. Общая схема конструкции оптического передатчика, в которой не все элементы являются обязательными, показана на рис. 4.5, [4].

Поставщики. Крупными поставщиками передатчиков являются фирмы: Epitaxx Inc. icsson Components Ab, Fujitsu Microelectronics Inc., Hamamatsu Corp., Hewlett-Packard, Hit Lasertron Inc., Laser Diode Inc., NEC Electronics tnc., OKI Semiconductors, Optek Technology Optical Communication Product Inc., Orte! Corp., Siemens Corp. и др. [5].

Рис. 4.5. Составляющие элементы передающего оптоэлектронного модуля (ПОМ)

4.2. Приемные оптоэлектронные модули

Приемные оптоэлектронные модули (ПРОМ) являются важными элементами волоконно-оптической системы. Их функция - преобразование оптического сигнала, принятого из волокна, в электрический. Последний обрабатывается далее электронными устройствами.

Основные элементы приемных оптоэлектронных модулей

Основными функциональными элементами ПРОМ являются:

фотоприемник, преобразующий полученный оптический сигнал в электрическую форму;

каскад электрических усилителей, усиливающих сигнал и преобразующих его в форму, пригодную к обработке;

демодулятор, воспроизводящий первоначальную форму сигнала.

На практике функциональные элементы могут несколько отличаться у разных ПРОМ. Например, детектор типа лавинный фотодиод обеспечивает внутреннее усиление, в результате чего собственные шумы последующего электронного усилителя становятся не столь заметными по сравнению с уровнем полезного сигнала, В некоторых ПРОМ отсутствует демодулятор, или цепь принятия решения, поскольку электрический сигнал с выхода каскада усилителей приемлем для непосредственной обработки другими электронными устройствами. Иногда для более эффективной работы ПРОМ перед детектором устанавливается оптический усилитель.

На рис. 4.6 приведены функциональные элементы аналогового (а) и цифрового (б) ПРОМ. Аналоговые ПРОМ принимают аналоговый оптический сигнал и на выходе также выдают аналоговый электрический сигнал. К аналоговым приемникам предъявляются требования высокой линейности преобразования и усиления сигнала при минимуме вносимых шумов - в противном случае возрастают искажения сигнала. На протяженных линиях с большим количеством приемо-передающих узлов искажения и шумы накапливаются, что снижает эффективность аналоговых много ретрансляционных линий связи.

При цифровой передаче не требуется очень точная ретрансляция форм импульсов. Цифровой приемник должен включать узел принятия решения или дискриминатор, имеющий установленные пороги на принятие сигналов 0 и 1, который распознает, какой сигнал пришел, устраняет шумы и восстанавливает необходимую амплитуду сигнала. Правильное выделение нужного сигнала может происходить при большом уровне шумов.

Рис. 4.6. функциональные элементы приемных оптоэлектронных модулей (ПРОМ): а) аналогового; б) цифрового

Различают синхронные и асинхронные режимы приема-передачи цифрового сигнала [б]. Упрощенное описание каждого из методов приведено ниже. При синхронном режиме битовый поток между приемником и передатчиком носит непрерывный характер. При асинхронном режиме данные передаются в виде организованных битовых последовательностей - пакетов. В промежутках между пакетами линия молчит - сигнала нет. При синхронном режиме приема-передачи таймер приемника выделяет в приходящей битовой последовательности специальные сигналы - синхроимпульсы, на основании которых приемник регулярно настраивает или подстраивает свои часы. При асинхронном режиме приема-передачи приемник имеет свой независимый таймер. Принимая начальные биты пакета (преамбулу), таймер приемника настраивает узел принятия решения так, чтобы определение приходящего бита выполнялось на его середине. Электрический сигнал, который выдает узел принятия решения, идет на частоте таймера. Так как есть погрешность у разных таймеров, то, по мере принятия последующих битов пакета, момент определения приходящего бита плавно смещается в одну из сторон относительно середины приходящего бита. Для правильной идентификации всех битов пакета важно, чтобы смещение за время принятия пакета не превысило 0,5 бита. Это приводит к ограничению на максимальную длину пакета. Чем меньше погрешность таймеров, тем большая длина пакета может использоваться для передачи.

Принципы работы фотоприемника

Основным элементом ПРОМ является фотоприемник, изготавливаемый обычно из полупроводникового материала. В основе работы фотоприемника лежит явление внутреннего фотоэффекта, при котором в результате поглощения фотонов с энергией, превышающей энергию запрещенной зоны, происходит переход электронов из валентной зоны в зону проводимости (генерация электронно-дырочных пар) При наличии электрического потенциала с появлением электронно-дырочных пар от воздействия оптического сигнала появляется электрический ток, обусловленный движением электронов в зоне проводимости и дырок в валентной зоне. Эффективная регистрация генерируемых в полупроводнике электронно-дырочных пар обеспечивается путем разделения носителей заряда. Для этого используется конструкция с р-n переходом, которая называется фотодиодом. Из фотоприемников, применяемых ВОЛС, получили распространение p-i-n фотодиоды, лавинные фотодиоды, фототранзисторы.

Рассмотрим принципы работы фотоприемника на примере p-i-n фотодиода, для которого характерно наличие i-слоя (слаболегированного полупроводника n- типа) между слоями р+- n+-типа (+ означает сильное легирование), рис. 4.7 а. Также i-слой называют обедненным слоем, поскольку в нем нет свободных носителей. На p-i-n структуру подается напряжение с Обратным смещением U0 (по сравнению со светоизлучающим диодом). Сильное легирование крайних слоев делает их проводящими, и максимальное значение электрического поля (градиент потенциала) создается в i-слое. Но поскольку нет свободных носителей в i-слое, нет и электрического тока, так что i-слой испытывает только

поляризацию. При наличии падающего излучения на i-слой, в нем образуются свободные электронно-дырочные пары. Они под действием электрического поля быстро разделяются и двигаются в противоположных направлениях к своим электродам, образуя электрический ток. Эффективным является взаимодействие вне излучения только с i-слоем, так как при попадании фотонов в р+ - и n+ - слои возникает диффузионный ток, который имеет большую инерционность и ухудшает быстродействие. По этому при изготовлении фотодиодов стремятся делать р+- и прелой как можно тоньше, обедненную область достаточно большой протяженности, чтобы она полностью поглощав весь падающий свет.

Рис. 4.7. Структура, включение и распределение потенциала: а) p-i-n фотодиода; б) лавинного фотодиода

Фотодиоды могут изготавливаться из разных материалов. Рабочие диапазоны длин волн, в которых достигается максимальная эффективность фотодиодов для разных полупроводниковых материалов, приведены в табл. 4,2.

Эффективность (квантовая) обедненной области в рабочем диапазоне длин волн достаточно высока ~ 80-100%. Однако часть падающего излучения испытывает френелевское отражение от фоточувствительной поверхности из-за скачка показателей преломления на границе между этой поверхность и средой. Для уменьшения отражения приемную поверхность обедненного слоя покрывают антиотражающим слоем - специально подобранным прозрачным для длины волны излучения λ материалом толщиной кратной λ/4 и показателем преломления, равным (n1n2), где n1, и n2 - показатели преломления i-слоя и воздуха.

Таблица 4.2. Элементы и композиционные материалы, используемые для создания фотопоиемников различных длин волн Г41