Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Волоконно-оптические сети - Р.Р. Убайдуллаев.pdf
Скачиваний:
689
Добавлен:
24.05.2014
Размер:
17.59 Mб
Скачать

сухих соединениях и сварках при затухании в волокне 0,4 дБ/км получаем максимальное расстояние 62,5 км.

Уменьшить потери можно, если передавать сигнал на длине волны 1550 нм. По потерям при прежнем динамическом диапазоне 25 дБ и при условии, что волокно имеет затухание 0,25 дБ/км, получаем расстояние 100 км. По дисперсии при использовании лазеров с ∆λ = 2 нм (1310 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 12600 МГц км. В итоге на дистанции 100 км полоса пропускания будет 126 МГц, что сравнимо с частотой модуляции Fast Ethernet. Это не очень надежно. При фиксированной спектральной полосе ∆λ=2 нм затруднения можно снять, если использовать для передачи волокно со смещенной дисперсией DSF. Если же кабельная система представлена исключительно одномодовыми волокнами со ступенчатым профилем (SF), то следует использовать оптические передатчики с более узкой спектральной полосой, например ∆λ = 1 нм.

Пример 2.4. Стандарт АТМ 622 Мбит/с (STM-4) для одномодового волокна. Оптический интерфейс АТМ 622 Мбит/с использует кодировку 8В/10В, что соответствует частоте модуляции 778 МГц. При использовании лазера с ∆λ = 0,1 нм (1550 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 252000 МГц км (12600х20) и при длине оптического сегмента 100 км будет 2520 МГц, что значительно больше 778 МГц. То есть, с точки зрения дисперсии, при использовании лазера с ∆λ, = 0,1 нм (1550 нм) протяженность в 100 км является допустимой, даже если применяется стандартное ступенчатое волокно.

Пример 2.5. Передача супер-сигнала на частоте 100 ГГц по одномодовому волокну со смещенной дисперсией DSF. При использовании лазеров с ∆λ = 0,1 нм (1550 нм) удельная полоса пропускания для DSF 8/125 составляет более 2400 ГГц км (20 х 120000 МГц км) и при длине оптического сегмента 20 км будет 120 ГГц, что незначительно превосходит 100 ГГц. То есть, с точки зрения дисперсии, протяженность сегмента в 20 км находится на грани предельного допустимого расстояния. Именно поэтому оптические супер-сети со скоростью передачи на канал 100 Гбит/с имеют ограниченный масштаб, например масштаб города.

Поляризационная модовая дисперсия

Поляризационная модовая дисперсия τpmd - возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Коэффициент удельной дисперсии Т нормируется в расчете на 1 км и имеет размерность (пс/(√км)), а τpmd растет с ростом расстояния по закону τpmd=T√L . Для учета вклада в результирующую дисперсию следует добавить слагаемое τ2pmd правую часть (2-13). Из-за небольшой величины τpmd может проявляться исключительно в одномодовом волокне, причем когда используется передача широкополосного сигнала (полоса пропускания 2,4 Гбит/с и выше) с очень узкой спектральной полосой излучения 0,1 нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

В одномодовом волокне в действительности может распространяться не одна мода, а две фундаментальные моды - две перпендикулярные поляризации исходного сигнала. В идеальном волокне, в котором отсутствуют неоднородности по геометрии, две моды распространялись бы с одной и той же скоростью, рис. 2.11 а. Однако на практике волокна имеют не идеальную геометрию, что приводит к различной скорости распространения двух поляризационных составляющих мод, рис. 2.11 б.

Избыточный уровень τpmd, проявляясь вместе с чирпированным модулированным сигналом от лазера, а также поляризационной зависимостью потерь, может приводить к временным колебаниям амплитуды аналогового видеосигнала. В результате ухудшается качество изображения, или появляются диагональные полосы на телевизионном экране. При передаче цифрового сигнала высокой полосы (>2,4 Гбит/с) из-за наличия τpmd может возрастать битовая скорость появления ошибок.

Главной причиной возникновения поляризационной модовой дисперсии является нециркулярность (овальность) профиля сердцевины одномодового волокна, возникающая в процессе изготовления или эксплуатации волокна. При изготовлении волокна только строгий контроль позволяет достичь низких значений этого параметра.

Пример 2.6. Оценить расстояние L0 , при котором хроматическая τchr и поляризационная модовая дисперсии τpmd сравниваются по величине, если коэффициент хроматической дисперсии T = 2 пс/(нм км), коэффициент поляризационной модовой дисперсии Т=0,5 пс/√км , а ширина спектрального излучения ∆λ =0,05 нм.

Приравнивая выражения τchr =D ∆λ L и τpmd =TL, находим L0 =(T/D ∆λ)2 =25 км. Если при L > L0 поляризационной модовой дисперсией можно

пренебречь, то при L < L0 , наоборот, ее следует строго учитывать. Проблема поляризационной модовой дисперсии возникает при обсуждении проектов построения супермагистралей (>100 Гбит/с) городского масштаба.

Пример 2.7. Оценить максимальное допустимое расстояние оптического сегмента Lmax на которое можно передать одноканальный сигнал с частотой W=100 ГГц без ретрансляции, исходя из ограничений, вносимых поляризационной модовой дисперсией, если коэффициент поляризационной модовой дисперсии Т= 1,0 пс/км.

На основании соотношения (2-16) получаем: τpmd =TL<0,44/W. Отсюда

Lmax =(0,44/WT)2=(0,44/(100 109 1 10-12))2 км. При Т=0,5пс/км расстояние воз-

растает до 77 км.