
- •Волоконно-оптические сети
- •1. Основные сведения о ВОЛС
- •1.1. Общие положения
- •Преимущества ВОЛС
- •Недостатки ВОЛС
- •Типовая схема системы волоконно-оптической связи
- •1.2. Основные компоненты ВОЛС
- •Литература к предисловию и главе 1
- •2. Оптическое волокно
- •2.1. Типы оптических волокон
- •Многомодовые градиентные волокна
- •Одномодовые волокна
- •2.2. Распространение света по волокну
- •Геометрические параметры волокна
- •Типы мод
- •Длина волны отсечки (cutoff wavelength)
- •Затухание
- •Потенциальные ресурсы волокна и волновое уплотнение
- •Дисперсия и полоса пропускания
- •Межмодовая дисперсия
- •Хроматическая дисперсия
- •Поляризационная модовая дисперсия
- •2.3. Характеристики поставляемых волокон
- •Градиентное многомодовое волокно
- •Функциональные свойства одномодовых волокон
- •Литература к главе 2
- •3. Пассивные оптические компоненты
- •3.1. Разъемные соединители
- •Типы конструкций
- •Вносимые потери
- •Надежность, механические, климатические и другие воздействия
- •Стандарты соединителей
- •Оптические шнуры
- •Адаптеры быстрого оконцевания
- •Механический сплайс (МС)
- •Производители и поставщики
- •3.2. Сварное соединение волокон
- •Непрерывное соединение
- •Допускается заводская прединсталляция
- •Количественные оценки качества сварки
- •3.3. Оптические разветвители
- •Древовидный разветвитель (tree coupler)
- •Звездообразный разветвитель (star coupler)
- •Ответвитель (tap)
- •Параметры, характеризующие разветвитель
- •3.4. Устройства волнового уплотнения WDM
- •Основные технические параметры WDM фильтров
- •Широкозонные и узкозонные WDM фильтры
- •3.5. Оптические изоляторы
- •Вращение плоскости поляризации
- •Принцип действия оптического изолятора
- •Технические параметры
- •3.6. Другие специальные пассивные компоненты ВОЛС
- •Аттенюаторы
- •Оптические переключатели
- •Соединительные герметичные муфты
- •Терминирование ВОК
- •Оптический узел
- •Оптические распределительные устройства (ОРУ)
- •Оптические кроссовые устройства (ОКУ)
- •Интерконнект и кросс-коннект
- •Принципы построения оптического кроссового устройства
- •Обслуживание ОКУ
- •Оптические кроссы высокой и сверхвысокой плотности
- •Характеристики
- •Примеры инсталляции кроссового оборудования
- •Литература к главе 3
- •4. Электронные компоненты систем оптической связи
- •4.1. Передающие оптоэлектронные модули
- •Типы и характеристики источников излучения
- •Светоизлучающие диоды
- •Лазерные диоды
- •Другие характеристики
- •Основные элементы ПОМ
- •4.2. Приемные оптоэлектронные модули
- •Основные элементы приемных оптоэлектронных модулей
- •Принципы работы фотоприемника
- •Технические характеристики фотоприемников
- •Лавинный фотодиод
- •Электронные элементы ПРОМ
- •4.3. Повторители и оптические усилители
- •Проблема расстояния
- •Типы ретрансляторов
- •Повторители для цифровых линий связи
- •Конструкция
- •Оптические усилители
- •4.4. Разновидности усилителей EDFA
- •Усилители на кремниевой основе
- •Усилители на фтор-цирконатной основе
- •Литература к главе 4
- •5. Сети передачи данных
- •5.1. Мультиплексирование
- •Частотное мультиплексирование FDM
- •Синхронное временное мультиплексирование
- •Статистическое (асинхронное) временное мультиплексирование
- •Инверсное мультиплексирование
- •5.2. Сети с коммутацией каналов и пакетов
- •Коммутация каналов
- •Коммутация пакетов
- •Коммутация каналов на разных скоростях и сети ISDN
- •Протокол Х.25
- •Ретрансляция кадров Frame Relay
- •Ретрансляция ячеек Cell Relay
- •Эволюция концепций передачи информации с появлением волокна
- •5.3. Эталонная модель OSI
- •Стандарты IEEE 802
- •Литература к главе 5
- •6. Сети FDDI
- •6.1. Принцип действия
- •6.2. Составляющие стандарта FDDI
- •6.3. Типы устройств и портов
- •Топологии сетей FDDI
- •6.4. Оптический обходной переключатель
- •Подключение к сети через OBS
- •Устройство OBS
- •6.5. Кабельная система и уровень PMD
- •Стандарты MMF-PMD, SMF-PMD и TP-PMD
- •Функция регистрации сигнала уровня PMD
- •Оптические соединители
- •Сравнения оптического волокна и витой пары
- •6.6. Уровень PHY
- •Синхронизация часов
- •Кодирование и декодирование данных
- •Особенности кодирования при передаче по витой паре
- •Эластичный буфер
- •Функция сглаживания
- •Фильтр повторений
- •6.7. Уровень MAC
- •Маркеры и кадры
- •Временной анализ процессов передачи маркера и кадров
- •Мониторинг и инициализация кольца
- •6.8. Обзор уровня SMT
- •Управление соединениями СМТ
- •Управление кольцом RMT
- •Управление, основанное на передаче кадров FВМ
- •Когда рекомендуется использовать технологию FDDI
- •Поставляемое оборудование
- •Литература к главе 6
- •7. Сети Ethernet/Fast Ethernet/Gigabit Ethernet
- •7.1. Сети Ethernet
- •Формат кадра Ethernet
- •Основные варианты алгоритмов случайного доступа к среде
- •Протокол CSMA/CD
- •Спецификации физического уровня IEEE 802.3 и типы портов
- •7.2. Основные типы устройств Ethernet
- •AUI интерфейс и трансиверы Ethernet
- •Рабочая станция, сетевая карта
- •Повторитель (концентратор)
- •Коммутатор
- •Расчет параметров коллизионного домена Ethernet (Модель 1)
- •Расчет параметров коллизионного домена Ethernet (Модель 2)
- •7.4. Сети Fast Ethernet
- •Архитектура стандарта Fast Ethernet
- •Физические интерфейсы Fast Ethernet
- •Типы устройств Fast Ethernet
- •Устройство/кабельный сегмент
- •7.6. Дуплексный Ethernet
- •7.7. Сети Gigabit Ethernet (стандарты IEEE 802.3z и 802.3ab)
- •Архитектура стандарта Gigabit Ethernet
- •Уровень MAC
- •Расширение носителя
- •Пакетная перегруженность
- •Типы устройств
- •7.8. Миграция Ethernet к магистральным сетям
- •Литература к главе 7
- •8. Полностью оптические сети
- •8.1. Основные определения и элементы
- •8.2. Плотное волновое мультиплексирование
- •Мультиплексоры DWDM
- •Пространственное разделение каналов и стандартизация DWDM
- •8.3. Применение оптических усилителей EDFA
- •Технические параметры усилителей EDFA
- •Классификация усилителей EDFA по способам применения
- •Расчет числа каскадов линейных усилителей EDFA
- •8.4. Оптимизация WDM/TDM
- •Протяженность линии
- •Трибные интерфейсы
- •Существующие архитектуры SDH
- •Миграция к оптическому уровню
- •8.5. Оптические коммутаторы
- •Разветвитель-коммутатор 2х2 (элемент 2х2)
- •Оптические коммутаторы nхn
- •8.6. Волновые конвертеры
- •8.7. Классификация полностью оптических сетей
- •Простая многоволновая линия связи SMWL
- •Параметры многоволновых мультиплексных линий связи
- •8.8. AON с коммутацией каналов
- •Широковещательная AON
- •AON с пассивной волновой маршрутизацией
- •AON с активной волновой маршрутизацией
- •8.9. AON с коммутацией пакетов
- •Сеть с последовательной битовой коммутацией
- •Сеть с параллельной битовой коммутацией
- •8.10. Архитектура AON
- •8.11. Прототипы и коммерческие реализации AON
- •Литература к главе 8
- •9. Сети абонентского доступа
- •9.1. Концепции развития абонентских сетей
- •Традиционная информационная абонентская сеть
- •Гибридная волоконно-коаксиальная сеть
- •Концепция "волокно в монтажный шкаф"
- •Концепция "волокно в квартиру"
- •9.2. Сети HFC
- •Спецификации физического уровня стандарта 802.14
- •Частотное распределение потоков
- •Распределение восходящих потоков
- •Распределение нисходящих потоков
- •Физические особенности восходящих и нисходящих потоков
- •Параметры
- •9.3. Платформа доступа Homeworx
- •Предоставляемые услуги
- •Основные элементы архитектуры
- •Структура потоков и транспортные характеристики Homeworx
- •Система спектрального смещения
- •Сценарии развертывания платформы Homeworx
- •9.4. Межстудийный телевизионный обмен и система DV6000
- •Оптические параметры
- •Параметры аналогового видеоканала
- •Дифференциальная фаза, град
- •Параметры звукового канала
- •Литература к главе 9

3.4. Устройства волнового уплотнения WDM
Устройство волнового (спектрального) уплотнения WDM - WDM фильтр - выполняет функции мультиплексирования MUX (объединения) или демультиплексирования DEMUX (выделения или фильтрации) оптических сигналов разных длин волн - каналов - в одно волокно из множества волокон или из одного волокна в несколько волокон. На передающей и приемной сторонах

могут устанавливаться однотипные устройства, но работающие в режимах MUX и DEMUX соответственно. Сам факт существования устройств WDM основан на свойстве волокна пропускать множество каналов, которые распространяются по волокну, не взаимодействуя между собой, рис. 3.14.
Первые устройства WDM появились в начале 90-х годов. В основном это были широкозонные двухканальные системы с длинами волн 1310 нм и 1550 нм.
Вдальнейшем по мере все большего освоения окна 1550 нм появляются прецизионные узкозонные WDM устройства с мультиплексируемыми длинами волн, полностью лежащими в окне 1550 нм. Это позволяет строить протяженные магистрали с множеством каналов на волокно. Катализатором прогресса становятся оптические усилители EDFA. Практически вся рабочая область длин волн (pass-band), в которой усилитель EDFA имеет достаточно высокий коэффициент усиления и приемлемое отношение сигнал/шум (1530-1560 нм), отводится в распоряжение систем волнового уплотнения. Термин DWDM (dense wavelength division multiplexer) - плотное волновое мультиплексирование - используется по отношению к WDM устройствам с расстоянием между соседними каналами 1,6 нм и менее. Для построения многоканальных WDM систем наряду с пассивными WDM фильтрами также требуются узкополосные лазеры, стабильно выдерживающие нужную длину волны. Пока именно лазеры остаются наиболее дорогим элементом в таких системах, несколько сдерживая их развитие.
Внастоящее время поставляются системы с числом каналов 4, 8 и 16. Предполагается рост числа мультиплексных каналов до 32.
Рис. 3.14. Схема оптического сегмента, использующего передачу мультиплексного сигнала по волокну
Основные технические параметры WDM фильтров
Терминология одинаково применима ко всем WDM устройствам. Поэтому начнем обсуждение с простейшего двухканального мультиплексора. Наряду с функцией объединения (рис. 3.15 а) устройства WDM также могут выполнять обратную функцию (функцию демультиплексирования) - выделения сигналов разных длин волн из волокна, рис. 3,15 б. Большинство производимых WDM устройств совмещают режимы мультиплексирования и демультиплексирования в одном устройстве. Такие устройства могут также использоваться для мультиплексирования и демультиплексирования двунаправленных потоков, рис. 3.15 в.
В идеале сигнал λ1, поступающий на полюс 1 (рис. 3.15 а), должен полностью проходить в общий выходной полюс 3 (common). На практике, однако, доля сигнала на длине волны λ1 ответвляется и проходит через полюс 2. Аналогично, применительно к рис. 3.15 б, идеальным было бы, если все 100%

входной мощности сигнала λ1, проходили через полюс 1 и наоборот. И здесь такой эффективности демультиплексирования для любого из существующих WDM устройств достичь невозможно. Для оценки этих паразитных явлений используют понятие переходные помехи.
Переходные помехи показывают, насколько эффективна работа WDM устройства. Они состоят из ближних и дальних переходных помех. Ближние переходные помехи NEXT (near-end crosstalk или directivity) аналогичны коэффициенту направленности и определяются как доля мощности, регистрируемая на длине волны λ1, на полюсе 2, соответствующем длине волны λ2, при условии, что сигнал на длине волны λ1, подается на полюс 1 (рис. 3.15 а).
Дальние переходные помехи FEXT (far-end crosstalk, также называют isolation) являются мерой изоляции между выходными полюсами по сигналам разных длин волн. Так, если сигнал поступает на длине волны λ1, на полюс 3 (common), (рис. 3.15 б), то для него FEXT - это доля мощности, регистрируемая на длине волны λ1, на полюсе 2, соответствующем длине волны λ2.
Рис. 3.15. Устройство WDM: а) мультиплексирование с уплотнением по длинам волн; б) демультиплексирование; в) мультиплексирование/демультиплексирование встречных потоков
В общем случае WDM модуль при работе в режиме мультиплексирования/ демультиплексирования может иметь n входных/выходных полюсов 1, 2, ..., n, которым соответствуют длины волн λ1, λ2, …, λn, один общий выходной/входной полюс (com) соответственно, рис. 3.15 в. Будем обозначать такой модуль 1:n.
Введем следующие обозначения -
для мультиплексора:
Pi(λk) - входной сигнал на длине волны λk, поступающий на полюс i;
Рi,j(λk) - выходной сигнал на длине волны λk, регистрируемый на входном полюсе j, при условии, что входной сигнал на длине волны λk поступает на полюс i (i≠j);

Pii(λk) - обратное рассеяние сигнала на длине волны λk, поступающего на полюс i;
Pi,com(λk) - выходной сигнал на длине волны λk, регистрируемый на сотполюсе, при условии, что входной сигнал на длине волны λk поступает на полюс i;
для демультиплексора:
Pcom(λk) - годной сигнал на длине волны λk , поступающий на сот-полюс;
Pcom,j(λk) - выходной сигнал на длине волны λk, регистрируемый на выходном полюсе j, при условии, что входной сигнал на длине волны λk
поступает на сот-полюс (j≠k);
Pcom,com(λk) - обратное рассеяние сигнала на длине волны λk, поступающего на сот-полюс;
Pcom,k(λk) - выходной сигнал на длине волны λk, регистрируемый на выходном полюсе k (собственном), при условии, что входной сигнал на длине
волны λk поступает на сот-полюс.
Коэффициенты ближних bNEXT, дальних bFEXT переходных помех, а также коэффициенты обратного рассеяния на ближнем и дальнем концах bNE и bFE определяются соотношениями:
Коэффициенты передачи на ближнем aNE и дальнем аFE концах определяются соотношениями:
В общем случае WDM модуль 1:n можно описать набором из n матриц переходных коэффициентов (по одной матрице на каждую длину волны), где каждая матрица имеет размерность (n + 1)х(n +1).
Пример типичной матрицы WDM модуля 1:2 приведен в табл. 3.7. Таблица 3.7. Матрица потерь ai,j (дБ) WDM модуля 1:2
Широкозонные и узкозонные WDM фильтры
Широкозонные WDM фильтры предназначены для работы с двумя, максимум с тремя длинами волн при расстоянии между каналами более, чем 70 нм (1310, 1550, 1625 нм). Они наиболее часто применяются в системах кабельного