- •Теория вероятностей
- •Составитель е. Н. Грибанов
- •Кемерово 2001
- •Теория вероятностей Случайные события
- •Элементы комбинаторики
- •Алгебра событий
- •Классическое определение вероятности
- •Геометрическая вероятность
- •Теоремы сложения
- •Теоремы умножения
- •Формула полной вероятности
- •8. Формула Байеса
- •10. Наивероятнейшее число появления событий
- •11. Локальная теорема Муавра-Лапласа
- •12. Интегральная теорема Муавра-Лапласа
- •Формула Пуассона.
- •Случайные величины
- •14. Закон распределения случайной величины
- •16. Плотность распределения
- •17. Математическое ожидание
- •18. Дисперсия и среднее квадратическое отклонение
- •19. Начальные и центральные моменты
- •20. Равномерное распределение
- •21. Нормальное распределение
- •22. Биномиальное распределение
- •Распределение Пуассона
- •24. Показательное распределение
- •Закон больших чисел
- •25. Лемма Маркова
- •26. Неравенство Чебышева
- •27. Теорема Чебышева
- •28. Основные понятия математической статистики
- •29. Вариационные ряды
- •30. Графическое изображение вариационного ряда.
- •31. Эмпирическая функция распределения
- •32. Средние величины
- •33. Медиана и мода
- •34. Показатели вариации
- •Свойства эмпирической дисперсии
- •35. Эмпирические центральные и начальные моменты
- •36. Эмпирические асимметрия и эксцесс
- •37. Метод условных вариантов для расчёта основных
- •38. Статистическое оценивание параметров
- •39. Основные свойства оценок
- •40. Оценка математического ожидания и дисперсии
- •Доказательство. Вычислим
- •41. Метод максимального правдоподобия
- •42. Метод наименьших квадратов
- •43. Распределение средней арифметической
- •44. Распределение дисперсии в выборках
- •45. Понятие доверительного интервала.
- •46. Доверительный интервал для математического
- •47. Доверительный интервал для
- •48. Доверительный интервал для дисперсии
- •49. Понятие статистической гипотезы
- •50.Ошибки, допускаемые при проверке статистических гипотез
- •51. Проверка гипотезы о равенстве математических
- •52. Сравнение выборочных средних при неизвестной
- •53.Сравнение выборочных дисперсий
- •54. Проверка гипотез о законе распределения
- •55. Выборочный коэффициент корреляции и его свойства
- •Доказательство. По определению
- •56. Метод вычисления выборочного коэффициента
- •57. Проверка гипотезы о значимости
- •58. Эмпирическая и теоретическая
- •60. Корреляционное отношение
- •Приложение
- •Критические точки распределения Стьюдента
- •Составитель
- •650026, Кемерово, ул. Весенняя, 28.
- •650099, Кемерово, ул. Д. Бедного, 4а.
32. Средние величины
Средние величины являются как бы «представителями» всего ряда наблюдений, поскольку вокруг них концентрируются наблюдавшиеся значения признака. Заметим, что только для качественно однородных наблюдений имеет смысл вычислять средние величины.
Различают несколько видов средних величин: средняя арифметическая, средняя геометрическая, средняя гармоническая, средняя квадратическая, средняя кубическая и так далее. При выборе вида средней величины необходимо ответить на вопрос: какое свойство ряда мы хотим представить средней величиной или, иначе говоря, какая цель преследуется при вычислении средней? Это свойство, получившее название определяющего, и определяет вид средней. Понятие определяющего свойства впервые введено советским статистиком А. Я. Боярским.
Наиболее
распространенной средней величиной
является средняя арифметическая. Пусть
-
данные наблюдений;
- средняя арифметическая. Свойство,
определяющее среднюю арифметическую,
формулируется следующим образом:
сумма результатов наблюдений должна
остаться неизменной, если каждое из них
заменить средней арифметической,
то есть
.
Так как
,
то
.
Отсюда получаем следующую формулу для
вычисления средней арифметической по
данным наблюдений:
.
Если по наблюдениям построен вариационный
ряд, то средняя арифметическая
,
где
-
вариант, если ряд дискретный, и середина
интервала, если ряд интервальный;
- соответствующая частота.
Очевидно, что если по данным наблюдений построен дискретный вариационный ряд, то обе формулы дают одинаковые значения средней арифметической. Если же по наблюдениям построен интервальный ряд, то средние арифметические, вычисленные по этим формулам могут не совпадать, так как во второй формуле значения признака внутри каждого интервала принимаются равными центрам интервалов. Ошибка, возникающая в результате такой замены, вообще говоря, очень мала, если наблюдения распределены равномерно вдоль каждого интервала, а не скапливаются к одноимённым границам интервалов.
Основные свойства средней арифметической.
Сумма отклонений результатов наблюдений от средней арифметической равна нулю, или сумма произведений отклонений вариантов от средней арифметической на соответствующие частоты равна нулю.
Если все результаты наблюдений уменьшить (увеличить) на одно и то же число, то средняя арифметическая уменьшится (увеличится) на это же число.
Если все результаты наблюдений уменьшить (увеличить) в одно и то же число раз, то средняя арифметическая уменьшится (увеличится) во столько же раз.
Средняя арифметическая алгебраической суммы соответствующих значений признака нескольких рядов наблюдений с одинаковым числом наблюдений равна алгебраической сумме средних арифметических этих рядов.
О.1. Среднюю арифметическую вычисленную по данным выборки называют выборочной средней.
Пример 36. Найти выборочную среднюю для выборки, представленной интервальным вариационным рядом
Интервалы |
3 - 7 |
7 - 11 |
11 - 15 |
15 - 19 |
19 - 23 |
23 – 27 |
Частоты |
6 |
9 |
11 |
12 |
8 |
4 |
Решение.
Середины интервалов равны: 5; 9; 13; 17; 21;
25. Сумма частот равна
.
Тогда выборочная средняя равна
.
