
- •Моделирование транспортных процессов и систем
- •1. Информация о дисциплине
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины
- •1.2.2. Объем дисциплины и виды учебной работы
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа
- •Введение (2 ч)
- •Раздел 1. Роль математических методов в решении производственных задач автомобильного транспорта (14 ч)
- •Раздел 7. Методы динамического программирования (13 ч)
- •Раздел 8. Планирование перевозок по сборным, развозочным и сборно-развозочным маршрутам (22 ч)
- •Раздел 9. Теория массового обслуживания в задачах оптимизации транспортных процессов (13 ч)
- •Заключение (1 ч)
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины
- •2.2.2. Тематический план дисциплины
- •2.2.3. Тематический план дисциплины
- •2.3. Структурно-логическая схема дисциплины «Моделирование транспортных процессов и систем»
- •Роль математических методов в решении производственных задач автомобильного транспорта
- •2. Корреляционно-регрессионный
- •3. Модели линейного программирования
- •4. Формирование
- •5. Маршрутизация перевозок
- •6. Модели транспортных сетей
- •7. Методы динамического программирования
- •8. Планирование перевозок по сборным,
- •9. Теория массового обслуживания в задачах оптимизации транспортных процессов. Заключение
- •Использовании информационно-коммуникационных технологий
- •2.5. Практический блок
- •2.5.1. Лабораторные работы
- •2.5.1.1. Лабораторные работы (очная и очно-заочная формы обучения)
- •2.5.1.2. Лабораторные работы (заочная форма обучения)
- •2.5.2. Практические занятия (очная форма обучения)
- •2.6. Балльно-рейтинговая система оценки знаний
- •Информационные ресурсы дисциплины
- •Библиографический список
- •3.2. Опорный конспект Введение
- •Роль математических методов в решении производственных задач автомобильного транспорта
- •1.1. Представление процессов в автомобильно-дорожном комплексе как процессов в сложной системе
- •1.2. Понятие модели. Классификация моделирования систем. Эвристические методы решений задач
- •Условия задач по количеству грузов и расстояний
- •Формирование объекта имитационного моделирования
- •Массив вершин графа автомобильно-дорожной сети территории
- •2. Корреляционно-регрессионный анализ математических моделей
- •2.2. Вычисления парной корреляции и линейной регрессии
- •Заключение по решению
- •Заключение по решению
- •3. Модели линейного программирования в решениях задач управления транспортными процессами
- •3.1. Общая задача линейного программирования
- •3.2. Графоаналитический метод
- •3.3. Симплексный метод
- •Симплексная таблица с первоначальным допустимым базисным решением задачи
- •Вторая симплексная таблица для решения задачи по перевозке грузов
- •4. Формирование системы оптимальных грузопотоков
- •4.1. Общая постановка задачи. Метод потенциалов
- •4.2. Задача закрытого типа по сокращению дальности перевозок
- •4.3. Задача открытого типа с нарушенным балансом производство-потребление для однородных грузов
- •Матрица условий задачи на перевозку груза при наличии дисбаланса производство-потребление
- •Матрица условий задачи с введенным фиктивным потребителем, уравнивающим дисбаланс производство-потребление
- •4.5. Задача с минимизацией времени перевозки скоропортящихся грузов
- •Матрица условий
- •Матрица расчета
- •5. Маршрутизация перевозок грузов помашинными отправками
- •5.1. Общая постановка задачи
- •5.2. Аналитическая модель задачи маршрутизации перевозок
- •5.3. Решение задачи маршрутизации. Составление маятниковых и
- •6. Модели транспортных сетей экономического региона и расчеты кратчайших расстояний перевозок
- •6.1. Принципы формирования моделей транспортных сетей
- •Минимальная величина Это и будет строки к9, и опять .
- •Затем исправляется величина в соответствующем столбце матрицы.
- •Исходный базовый вариант для определения кратчайших расстояний между пунктами модели (рис. 6.2)
- •Оптимальное решение для определения кратчайших расстояний между пунктом а1 и всеми остальными для модели (рис. 6.2)
- •Решение для определения кратчайших расстояний по маршрутной сети (рис. 6.2) от пункта а2 до всех остальных
- •Решение для определения кратчайших расстояний по маршрутной сети (рис. 6.2) от пункта а3 до всех остальных
- •Методы динамического программирования
- •Основные понятия и общая постановка задачи
- •7.2. Методика оптимального решения задачи
- •Выбор кратчайшего пути на этапе V
- •Выбор кратчайшего пути на этапе IV
- •Выбор кратчайшего пути на этапе III
- •Выбор кратчайшего пути на этапе II
- •Выбор кратчайшего пути на этапе I
- •8. Планирование перевозок по сборным, развозочным и сборно-развозочным маршрутам
- •8.2. Проектирование развозочных маршрутов методом перебора вариантов
- •Результаты расчета пробега и грузооборота в развозочной системе
- •Результаты функционирования автомобиля в системе
- •8.3. Проектирование маршрутов методом сумм
- •Результаты расчета
- •Результаты функционирования автомобиля в системе
- •9. Теория массового обслуживания в задачах оптимизации транспортных процессов
- •Общая характеристика автотранспортных задач массового обслуживания
- •9.2. Аналитические модели оптимальных решений задач
- •Заключение
- •3.3. Глоссарий
- •3.4. Методические указания к выполнению лабораторных работ
- •Объемы перевозок груза, т
- •Номер начального пункта пути следования по сети дорог (рис. 6.2) для выполнения лабораторной работы №3
- •Номер начальной точки (пункт погрузки), пункты разгрузки и потребность их в грузе
- •3.5. Методические указания к проведению практических занятий
- •3.5.1. Практическое занятие №1. Оптимизация грузопотоков с помощью модели транспортной задачи линейного программирования с использованием метода аппроксимации Фогеля
- •1. Описание метода расчета
- •Исходная матрица с данными и начальный этап решения задачи по методу аппроксимации Фогеля
- •Этапы расчетов по составлению первого допустимого плана перевозок груза при решении задачи по методу аппроксимации Фогеля
- •3.5.2. Практическое занятие №2. Сменно–суточное планирование перевозок помашинных отправок грузов. Составление маятниковых и кольцевых маршрутов
- •Сводный план грузопотоков (т) и расстояния между пунктами (км),
- •План подачи порожнего подвижного состава (пс) под погрузку,
- •Сводный план грузопотоков (т) и расстояния между пунктами (км) варианты 2,4,6,8,0 (последняя цифра шифра студента)
- •План подачи порожнего подвижного состава (пс) под погрузку, варианты 2,4,6,8,0 (последняя цифра шифра студента)
- •3.5.3. Практическое занятие №3. Прикрепление кольцевых маршрутов к автотранспортному предприятию и технологический расчет маршрута
- •4. Блок контроля освоения дисциплины
- •4.1. Задание на курсовой проект и методические указания к его выполнению общие указания
- •Задание на курсовой проект
- •Вопросы по курсовому проекту
- •Задача №1
- •Расстояния между пунктами, км
- •Объемы перевозок груза, т
- •Задача №2
- •Развозочного маршрута
- •Методические указания к выполнению курсового проекта
- •4.2. Текущий контроль
- •Правильные ответы на тренировочные тесты текущего контроля
- •Итоговый контроль
- •Перечень вопросов к экзамену
- •Содержание
- •3. Информационные ресурсы дисциплины……………………………………27
- •191186, Санкт-Петербург, ул. Миллионная, 5
2. Корреляционно-регрессионный анализ математических моделей
2.1. Понятия корреляции и регрессии
Корреляция в переводе с латинского обозначает соответствие или взаимосвязь. Корреляционная зависимость отражает связь между величинами, когда определенным значениям факториальных величин соответствует много значений зависимой величины.
Корреляционный анализ в задачах моделирования транспортных процессов и систем имеет фундаментальное значение, так как теснота корреляционной связи определяет структуру модели. Высокая и полная корреляционная связь требует объединения величин. Отсутствие или слабость корреляционных связей позволяют рассматривать величину как независимую.
Во многих случаях выбор независимых величин на базе исследования их корреляционных связей требует дополнительного экспертного исследования и решения.
Например, при формировании имитационной модели (см. пример 1.2 и рис. 1.1) независимость источников грузопотоков между собой, а также и получателей грузов между собой требует корреляционного анализа. При наличии зависимости (например, дополнительных перевозок грузов между источниками грузопотоков) требуются изменение структуры имитационной модели, учет этих связей.
Корреляционная связь между двумя переменными изучается с помощью парной корреляции. О тесноте корреляционной связи можно судить по характеру расположения точек на графике, связующем переменные х и у. Такой график называется полем корреляции (рис. 2.1). Разброс точек по всему полю свидетельствует об отсутствии корреляции (рис. 2,а), рис. 2,б свидетельствует о слабой умеренной корреляции, рис. 2,в - о полной корреляции.
Численное значение корреляционной связи оценивается коэффициентом корреляции r.
Задачей регрессионного анализа является установление вида зависимости (1.2) (зависимости параметра оптимизации у от факториальных величин х1, х2…хn). Указанная зависимость называется уравнением регрессии. Корреляционно-регрессионный анализ позволяет прогнозировать развитие рассматриваемого явления и решать задачу построения модели и ее оптимизации. Регрессионный анализ введен в практику расчетов английским математиком и механиком У.Р. Гамильтоном в 1840-х годах.
При проведении регрессионного анализа применяются понятия парных и множественных коэффициентов регрессии. На рис. 2.2 показано корреляционное поле парной линейной зависимости, отказов автомобилей в эксплуатации от числа капитальных ремонтов. Рассмотрение расположения точек на поле рис. 2.2 позволяет говорить о слабой корреляционной зависимости, разброс точек на рис. 2.2 примерно соответствует рис. 2.1,б. Из рис. 2.2 видно, что если для каждой величины х найти средние значения у и соединить эти точки, то получится ломанная линия, называемая опытной линией регрессии. Очевидно, что полученная линия является следствием ошибок замеров, недостаточного их количества, дискретности графика. По мере увеличения числа данных (увеличения объема выборки) ломаная линия асимптотически приближается к какой-то плавной кривой. Поскольку объем данных всегда ограничен, то возникает задача аппроксимации опытной линии регрессии теоретической функцией. Функция, аппроксимирующая опытную ломаную линию, называется теоретической линией регрессии.
При парной зависимости опытная линия регрессии может быть аппроксимирована с помощью следующих функций:
у = а + b х – прямая линия;
у = а х2 + b х + с – парабола второго порядка;
у =
– гипербола;
у = а + b lg х – логарифмическая функция.
Используются также показательная и степенная функции, арифметическая и геометрическая прогрессии, алгебраический полином, тригонометрический ряд (ряд Фурье) и другие функции.
В общем случае для n переменных уравнение регрессии приобретает более сложный вид.