Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Леонтьев А.Г. Электромеханика.doc
Скачиваний:
197
Добавлен:
02.05.2014
Размер:
1.35 Mб
Скачать

5.4. Вентильные двигатели

Машины постоянного тока имеют более высокие технические показатели (линейность характеристики, высокий КПД, малые габариты), чем машины переменного тока. Существенный недостаток - наличие электромеханического коллектора, который снижает надежность, создает радиопомехи, взрывоопасность и т.д.

Этих недостатков лишен бесконтактный двигатель постоянного тока, называемый вентильным двигателем. В этом двигателе щеточный аппарат заменен полупроводниковым коммутатором, якорь находится на статоре, а ротор представляет собой двухполюсный (реже четырехполюсный) постоянный магнит. Для упрощения коммутатора число секции обмотки якоря выбирается малым - три, четыре.

Рис. 5-11а. Трехфазный вентильный двигатель.

Схема трехфазного вентильного двигателя с двухполюсным ротором представлена на . Существенным элементом двигателя является датчик положения - ДПР. Он может основан на разных принципах - фотоэлектрические, индуктивные, емкостные, на эффекте Холла, и т.д. В рассматриваемом двигателе применяется фотоэлектрический датчик, содержащий три неподвижных фотоприемникаmlk, которые закрываются поочередно вращающейся шторкой. Двоичный код, получаемый с ДПР, фиксирует шесть различных положений ротора (шесть фаз), это соответствие кодов и фаз приведено в верхней части.

Фаза

1

2

3

4

5

6

K

1

0

0

0

1

1

L

1

1

0

0

0

1

M

1

1

1

0

0

0

U1

1

0

0

0

0

1

U2

0

1

1

0

0

0

U3

0

0

0

1

1

0

U4

0

0

1

1

0

0

U5

0

0

0

0

1

1

U6

1

1

0

0

0

0

В этой таблице единице соответствует наличие сигнала на выходе датчика, т.е. когда фотоприемник открыт, а нулю - отсутствие сигнала, когда соответствующий фотоэлемент закрыт шторкой.

Рис. 5-11б. Трехфазный вентильный двигатель.

Сигналы датчиков преобразуются управляющим устройством УУ () в комбинацию управляющих напряженийU1-U6, которые управляют транзисторными ключамиK1-K6согласно нижней части, так, что в каждый такт (фазу) работы двигателя включены два ключа - верхний и нижний и к сети подключены последовательно две из трех обмоток якоря. Обмотки якоряa,b,cрасположены на статоре со сдвигом на 120·град (см.) и их начала и концы соединены так, что при переключении ключей создается вращающееся магнитное поле. Одному циклу работы коммутатора соответствует один оборот ротора. Цикл делится на шесть тактов (временных фаз), которым соответствует пространственный угол α=60·град. Коммутация производится так, что поток возбуждения Ф0отстает на угол α от потока якоря. Натоки в обмотках и положение ротора показаны для фазы 1. В результате взаимодействия потока якоря и возбуждения создается вращающий моментM, который стремится развернуть ротор так, чтобы потоки якоря и возбуждения совпали, но при повороте ротора под действием ДПР происходит переключение обмоток и поток якоря поворачивается на следующий шаг.

Рис. 5-12б. Временная диаграмма трехфазного вентильного двигателя.

Временная диаграмма работы вентильного двигателя приведена на . Как видно из диаграммы, вентильный двигатель работает как в данном случае трехфазный синхронный двигатель, частота вращения его ротора пропорциональна частоте вращения поля. Основным отличием от синхронного является его самосинхронизация с помощью ДПР, в результате чего у этого двигателя, наоборот, частота вращения поля пропорциональна (в данном случае при двухполюсном якоре равна) частоте вращения ротора, а частота вращения ротора зависит от напряжения питания, т.е. двигатель работает как двигатель постоянного тока.

В отличие от двигателя постоянного тока, так как вентильный двигатель имеет мало секций в обмотке якоря, момент имеет пульсации, и среднее значение момента зависит от периода включения ключа β, показанного на .

В получена формула для среднего значения электромагнитного момента вентильного двигателя

где M*и ω*- относительные момент и частота вращения по отношению к базовым:

;;;,

где m- число обмоток (секций),R- сопротивление секции.

Учитывая эти соотношения, из можно получить выражение для механической характеристики вентильного двигателя

,

где AиB- коэффициенты, зависящие от β.

;

Эти коэффициенты зависят от способа коммутации обмоток и приведены в .

Способ коммутации

β

A

B

m

Парная

Π

1.27

4

4

Поочередная(полушаги)

1.24

4.1

4

Трехфазная

 

1.17

4.17

3

Одинарная

 

1.02

8.4

4

В рассматриваемом примере применена трехфазная коммутация, другие перечисленные в способы коммутации соответствуют коммутации обмоток в шаговых двигателях, так как вентильный двигатель можно через датчик положения ротора. Механические характеристики показаны на.

Рис. 5-13а. Механические характеристики вентильного двигателя.

При рассмотрении динамики вентильного двигателя надо дополнить уравнениеуравнением движения вида

Рис. 5-13б. Структурная схема вентильного двигателя.

На основании иможет быть построена структурная схема (), по которой получена передаточная функция

,

где - коэффициент передачи двигателя,- электромеханическая постоянная времени.

Таким образом, вентильный двигатель по своим статическим и динамическим характеристикам подобен двигателю постоянного тока.

Соседние файлы в предмете Электрические машины