Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_kvantovoy_fiziki.doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
2.11 Mб
Скачать

10. Вероятностный характер волн де-Бройля. Волновая функция

Микрочастицами называют элементарные частицы (электрон, протон, фотон и др.), а также сложные частицы, образованные из сравнительно небольшого числа элементарных частиц (молекулы, атомы и др.). Своеобразие свойств микрочастиц отчетливо обнаруживается в следующем мысленном эксперименте.

Рис. 10.1

Направим на преграду с двумя узкими щелями параллельный пучок моноэнергетических (т. е. обладающих одинаковой кинетической энергией) электронов (рис. 10.1). Сначала закроем щель 2, получим изображение 1, затем закроем щель 1, получим изображение 2 (рис. 10.1, б). Если оставить оба отверстия открытыми, получаем картину (рис. 10.1, в). Она оказывается аналогичной картине, получающейся при интерференции двух когерентных световых волн. Характер картины свидетельствует о том, что на движение электрона оказывают влияние оба отверстия.

Такой результат несовместим с представлением о траектории. Если бы электрон в каждый момент времени находился в определенной точке пространства и двигался по определенной траектории, он проходил бы через определенное отверстие, первое или второе. Картина, показанная на рис. 10.1, в, указывает на наличие волновых свойств у микрочастиц. Интерференция электронов на двух щелях наблюдалась в эксперименте, проведенном К. Иенссоном в 1961 г.

Немецкий физик Макс Борн предложил рассматривать интенсивность световой волны, или волны де-Бройля, как меру вероятности обнаружения частицы в данном месте пространства.

Пусть dV – некоторый объем в пространстве, в котором находится частица, dP – вероятность нахождения частицы в этом объеме, тогда

,

где является плотностью вероятности обнаружения частицы. Отметим, что в оптике под обычно понимается интенсивность света.

Движущейся микрочастице ставится в соответствие волновая функция , которая представляет собой функцию координат и времени. Вероятность обнаружить частицу в произвольный момент времени t в любой точке с координатами (х, у, z) пропорциональна . Квадрат модуля используется потому, что – комплексная функция. Формально она обладает свойствами классической волны, поэтому ее называют волновой функцией.

Рассмотрим принцип суперпозиции волновых функций. Если событие может произойти несколькими взаимно исключающими способами (например, двумя), то вероятность этого события представляет собой сумму вероятностей каждого из способов – принцип суперпозиции. В этом случае результирующая волновая функция

.

Воспользуемся стандартным обозначением: величина со звездочкой обозначает комплексно сопряженную величину. Тогда плотность вероятности равна

Этот формализм составляет основу волновой и квантовой механики. Приведенное выражение совпадает с правилом сложения амплитуд волн в оптике.

При такой вероятностной интерпретации поведения микрочастиц понятие траектории теряет свой строгий смысл. С помощью ‑функции можно лишь предсказать, с какой вероятностью частица может быть обнаружена в различных точках пространства.

Вероятностный смысл волновой функции иной, чем в статистической физике. Там предполагается, что частица находится в определенном месте, но из-за большого числа частиц можно составить лишь вероятностное суждение о ее координатах и вычислить вероятность распределения частиц.

В доквантовой физике «понять» означало составить себе наглядный образ объекта или процесса. Квантовую физику нельзя понять в таком смысле слова. Всякая наглядная модель неизбежно будет действовать по классическим законам, и поэтому самое правильное, что можно сделать, это отказаться от попыток строить наглядные модели поведения квантовых объектов. Сочетая в себе свойства частицы и волны, микрочастицы «не ведут себя ни как волны, ни как частицы».

Отличие микрочастицы от привычной для нас макрочастицы заключается в том, что она не обладает одновременно определенными значениями координаты и импульса, вследствие чего понятие траектории применительно к микрочастице утрачивает смысл. Здесь уместно сформулировать общее правило квантовой физики: всякая попытка узнать что-либо о свойствах микрочастиц, всякий эксперимент с ними обязательно меняют их состояние и их волновую функцию.

Ричард Фейман, удостоенный в 1965 г. Нобелевской премии за приложение квантовой механики к электродинамике, писал: «Быть может, вам все еще хочется выяснить: “А почему это? Какой механизм прячется за этим законом?” Так вот: никому никакого механизма отыскать не удалось. Никто в мире не сможет вам “объяснить” ни на капельку больше того, что “объяс­ни­ли” мы. Никто не дает вам никакого более глубокого представления о положении вещей. У нас их нет, нет представлений о более фундаментальной механике, из которой можно вывести эти результаты».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]