Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_kvantovoy_fiziki.doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
2.11 Mб
Скачать

УДК 530.145

ББК В314

О 75

Авторы: М. Н. Малышев (гл. 2), М. В. Павловская (гл. 2), Ю. И. Попов (гл. 1), А. В. Земцов (гл. 1).

Основы квантовой физики: Учеб. пособие / Под ред. А. И. Мамыкина. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2003. 47 с.

Составлено на основе рабочей программы курса общей физики. Излагаются следующие вопросы: тепловое излучение, квантовая оптика, основные положения квантовой механики.

Предназначено для студентов 2-го курса всех факультетов и направлений.

Рецензенты: кафедра физики СПбГИТМО; д-р физ.-мат. наук Н. М. Ко­жевников (СПбГПУ).

Утверждено редакционно-издательским советом университета в качестве учебного пособия

ISBN 5-7629-0528-8 © СПбГЭТУ «ЛЭТИ», 2003

Тепловое излучение. Квантовая оптика

1. Тепловое излучение

Излучение телами электромагнитных волн может осуществляться за счет различных видов энергии. Самым распространенным является тепловое излучение, т. е. испускание электромагнитных волн за счет внутренней энергии тела. Все остальные виды излучения, объединяются под общим названием «люминесценция». Тепловое излучение имеет место при любой температуре, однако при невысоких температурах излучаются практически лишь электромагнитные волны инфракрасного диапазона.

Окружим излучающее тело оболочкой, внутренняя поверхность которого отражает все падающее на нее излучение. Воздух из оболочки удален. Отраженное оболочкой излучение частично или полностью поглощается телом. Следовательно, будет происходить непрерывный обмен энергией между телом и заполняющим оболочку излучением.

Равновесное состояние системы «тело – излучение» соответствует условию, когда распределение энергии между телом и излучением остается неизменным для каждой длины волны. Такое излучение принято называть равновесным излучением. Экспериментальные исследования показывают, что единственным видом излучения, которое может находиться в равновесии с излучающими телами, является тепловое излучение. Все остальные виды излучения оказываются неравновесными. Способность теплового излучения находиться в равновесии с излучающими телами обусловлена тем, что его интенсивность возрастает при повышении температуры.

Предположим, что равновесие между телом и излучением нарушено и тело излучает энергию большую, чем поглощает. Тогда внутренняя энергия тела будет убывать, что приведет к уменьшению температуры. Это, в свою очередь, приведет к уменьшению излучаемой телом энергии. Если равновесие нарушится в другую сторону, т. е. излучаемой энергии окажется меньше, чем поглощаемой, температура тела будет возрастать до тех пор, пока снова не установится равновесие.

Из всех видов излучения равновесным может быть только тепловое излучение. К равновесным состояниям и процессам применимы законы термодинамики. Поэтому тепловое излучение подчиняется общим закономерностям, вытекающим из принципов термодинамики. К рассмотрению этих закономерностей мы и перейдем.

2. Закон Кирхгофа. Абсолютно черное тело

Среднее значение плотности потока энергии (т. е. потока энергии через единичную площадку, нормаль к которой совпадает с направлением переноса энергии), переносимой волной, принято называть интенсивностью. Плотность потока энергии, испускаемой излучающим телом во всех направлениях, называют энергетической светимостью тела . Единица измерения   ватт на метр квадратный (1 Вт/ м2).

Тепловое излучение представляет собой совокупность волн с различными частотами  или длинами волн . Введем обозначение для потока энергии, испускаемый единицей поверхности тела в интервале частот d. При малом интервале d поток будет пропорционален d

, (2.1)

где спектральная испускательная способность, т. е. плотность потока энергии, испускаемой телом в единичном интервале частот. Испускательная способность зависит от температуры тела. Энергетическая светимость, или интегральная испускательная способность, связана со спектральной испускательной способностью соотношением

.

Вместо частоты  излучение можно характеризовать длиной волны . Участку спектра d в этом случае будет соответствовать диапазон длин волн d. Дифференцируя выражение , получаем

, (2.2)

где с – скорость света в вакууме. Знак «минус» во втором выражении не имеет существенного значения, он лишь указывает на то, что с возрастанием одной величины другая убывает. Поэтому знак «минус» в дальнейшем писать не будем. Тогда

. (2.3)

Если диапазоны d и d, входящие в выражения (2.1) и (2.3), соответствуют одному и тому же интервалу dR, т. е. , то с учетом (2.2) получаем

. (2.4)

Соотношение (2.4) устанавливает взаимосвязь между плотностями потока энергии приходящимися на единичные интервалы частоты и длины волны.

Пусть на элементарную площадку поверхности тела падает поток лучистой энергии , обусловленный электромагнитными волнами, частота которых заключена в интервале d. Часть этого потока ( ) будет поглощена телом. Безразмерная величина, определяемая соотношением

,

называется поглощательной способностью тела. Поглощательная способность тела зависит от частоты и температуры. По определению, значение не может быть больше 1. Для тела, полностью поглощающего падающее на него излучение во всем диапазоне частот, . Такое тело называется абсолютно черным телом (АЧТ). Тело, для которого , называется серым.

Испускательная ( ) и поглощательная ( ) способности любого тела связаны между собой. Эта связь устанавливается законом Кирхгофа: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является универсальной для всех тел функцией частоты (длины волны) и температуры. Это отношение называют универсальной функцией Кирхгофа

,

Сами значения величин и у разных тел могут быть различными. Для абсолютно черного тела, по определению, , следовательно, . Таким образом, универсальная функция Кирхгофа есть не что иное, как испускательная способность абсолютно черного тела. Если пользоваться функцией Кирхгофа для длины волны , то связь между функциями следующая:

. (2.5)

А

Рис. 2.1

бсолютно черных тел в природе не существует, однако если в ограниченном диапазоне частот (или длин волн) поглощательная способность тела зависит от  и T так же, как и у АЧТ, то такое тело можно считать абсолютно черным в определенном интервале частот. Например, сажа или платиновая чернь имеют поглощательную способность близкую к единице лишь в ограниченном интервале частот.

Можно создать устройство, достаточно близкое по своим свойствам к абсолютно черному телу. Схематическое изображение АЧТ представлено на рис. 2.1. Оно представляет собой почти замкнутую полость с малым отверстием. Излучение, проникшее внутрь через отверстие, прежде чем выйти обратно из отверстия, претерпевает многократные отражения от зачерненной поверхности. При каждом отражении часть энергии поглощается, в результате чего практически все излучение поглощается такой полостью.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]