Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_kvantovoy_fiziki.doc
Скачиваний:
3
Добавлен:
22.11.2019
Размер:
2.11 Mб
Скачать

8. Эффект Комптона

Импульс фотона слишком мал и не поддается прямому измерению. Однако при столкновении фотона со свободным электроном величину передаваемого импульса уже можно измерить. Процесс рассеяния фотона на свободном электроне называется эффектом Комптона. Выведем соотношение, связывающее длину волны рассеянного фотона с углом рассеяния и длиной волны фотона до соударения. Пусть фотон с импульсом р и энергией Е = pc сталкивается с неподвижным электроном, энергия которого . После соударения импульс фотона равен и направлен под углом , как показано на рис. 8.1.

Рис. 8.1

Импульс электрона отдачи будет равен , и полная релятивистская энергия . Здесь мы используем релятивистскую механику, поскольку скорость электрона может достигать значений, близких к скорости света.

Согласно закону сохранения энергии или , преобразуется к виду

. (8.1)

Запишем закон сохранения импульса:

. (8.2)

Возведем (8.2) в квадрат: и вычтем это выражение из (8.1):

. (8.3)

Учитывая, что релятивистская энергия , можно показать, что правая часть выражения (8.2) равна . Тогда после преобразования импульс фотона равен

.

Переходя к длинам волн p =   = h/,  =   , получаем:

,

или окончательно:

. (8.4)

Величина называется комптоновской длиной волны. Для электрона комптоновская длина волны c = 0.00243 нм.

В своем опыте Комптон использовал рентгеновское излучение с известной длиной волны и обнаружил, что у рассеянных фотонов длина волны увеличивается. На рис. 8.1 приведены результаты экспериментального исследования рассеяния монохроматического рентгеновского излучения на графите. Первая кривая ( = 0) характеризует первичное излучение. Остальные кривые относятся к разным углам рассеяния , значения которых указаны на рисунке. По оси ординат отложена интенсивность излучения, по оси абсцисс длина волны. На всех графиках присутствует несмещенный компонент излучения (левый пик). Его наличие объясняется рассеянием первичного излучения на связанных электронах атома.

Эффект Комптона и внешний фотоэффект подтвердили гипотезу о квантовой природе света, т. е. свет действительно ведет себя так, как если бы он состоял из частиц, энергия которых h и импульс h/. Вместе с тем, явления интерференции и дифракции света могут быть объяснены с позиции волновой природы. Оба эти подхода в настоящий момент представляются взаимодополняющими друг друга.

Основные положения квантовой механики

9. Гипотеза де-Бройля. Опыт Дэвиссона и Джермера

В результате развития представлений о природе света выяснилось, что в оптических явлениях обнаруживается своеобразный дуализм (двойственность). Наряду с явлениями, которые самым непосредственным образом свидетельствуют о волновой природе света (интерференция, дифракция), имеются и другие явления, столь же непосредственно обнаруживающие его корпускулярную природу (фотоэффект, эффект Комптона).

В 1924 г. французский физик Луи де-Бройль выдвинул гипотезу о том, что дуализм не является особенностью одних только оптических явлений, а имеет универсальный характер. Каждой движущейся микрочастице он поставил в соответствие волновую функцию в виде монохроматической плоской волны. Такая волна характеризуется двумя величинами: частотой  (длиной волны ) и волновым вектором k. Частоту волны для материальной частицы де-Бройль предложил находить из соотношения Эйнштейна

,

где Е – полная энергия частицы. Поскольку импульс фотона равен , то волновой вектор можно определить соотношением

,

где р – импульс материальной частицы. Длина волны де-Бройля , связана с модулем волнового вектора k

. (9.1)

Таким образом, волну де-Бройля можно записать в виде

, (9.2)

где А – амплитуда; i – мнимая единица; r – радиус-вектор, задающий положение материальной частицы. Функция (9.2) получила название волновой функции, или пси-функции ( -функции). Физический смысл волновой функции в идее де-Бройля оставался неясным.

Гипотеза де-Бройля вскоре была подтверждена экспериментально. Дэвиссон и Джермер в 1927 г. исследовали отражение электронов от монокристалла никеля, имеющего кристаллическую решетку, принадлежащую к кубической системе. Узкий пучок электронов с одинаковой энергией направлялся на поверхность монокристалла, шлифованную перпендикулярно большей диагонали кристаллической ячейки. Отраженные электроны улавливались цилиндрическим электродом, присоединенным к гальванометру. Интенсивность отраженного пучка оценивалась по силе тока, текущего через гальванометр. Скорость электронов (или ускоряющее напряжение) и угол  варьировались. На рис. 9.1 показаны результаты эксперимента.

Рис. 9.1

Вертикальная ось на графиках определяет направление падающего луча. Сила тока численно равна длине отрезка, проведенного от начала координат до пересечения с кривой. Рассеяние оказалось особенно интенсивным при определенном значении угла . Этот угол соответствовал отражению от атомных плоскостей, расстояние между которыми d было известно из рентгенографических исследований. При данном  сила тока оказалась особенно значительной при ускоряющем напряжении, равном 54 В.

Вычисленная по формуле (9.1) длина волны, отвечающая этому напряжению, равна 1,67 нм. Полученные результаты совпадали с расчетами, проведенными по формуле Вульфа – Брэгга

;

Таким образом, опыт Дэвиссона и Джермера подтверждает гипотезу де‑Бройля. Г. П. Томсон (1927 г.) и независимо от него П. С. Тартаковский получили дифракционную картину при прохождении электронного пучка через металлическую фольгу.

Штерн и сотрудники его лаборатории показали, что дифракционные явления обнаруживаются также у атомных и молекулярных пучков. Во всех перечисленных случаях дифракционная картина соответствует длине волны, определяемой соотношением (9.1). Таким образом, экспериментально было доказано, что все микрочастицы обладают волновыми свойствами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]