
- •Раздел 1. Основные понятия и определения та у 7
- •Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- •Раздел 3. Динамические характеристики линейных систем 50
- •Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- •Раздел 5. Характеристики замкнутых аср 88
- •Раздел 6. Анализ устойчивости линейных систем 106
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •Раздел 1. Основные понятия и определения та у
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- •Кибернетика
- •Основные понятия тау
- •Объект автоматического управления
- •Примеры объектов и систем управления
- •Примеры систем управления
- •Функциональные и структурные формы объектов
- •Принципы автоматического регулирования (управления)
- •Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- •1.2 Классификация аср. Задачи курса тау Классификация аср
- •Задачи курса тау
- •Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- •2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- •Дифференциальные уравнения
- •Составление математической модели
- •Линеаризация
- •Передаточные функции сау. Преобразования Лапласа
- •Примеры моделей звеньев
- •Раздел 3. Динамические характеристики линейных систем
- •3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- •3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- •Ориентированные графы систем автоматического управления
- •Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- •Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- •Минимально фазовые и неминимально фазовые звенья
- •Типовые звенья. Характеристики звеньев
- •Раздел 5. Характеристики замкнутых аср
- •Замкнутые системы автоматического управления. Виды обратной связи
- •Передаточные функции в системах автоматического управления
- •Комбинированные аср
- •Каскадные аср
- •Расчёт настроек регуляторов в каскадных аср
- •Последовательность расчёта настроек регуляторов
- •Раздел 6. Анализ устойчивости линейных систем
- •6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- •Критерии устойчивости
- •Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- •Алгебраические критерии устойчивости
- •Критерий устойчивости Гурвица
- •Критерий устойчивости Рауса
- •6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерий устойчивости Найквиста
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Логарифмический критерий устойчивости
- •Логарифмическая форма критерия Найквиста
- •Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- •Раздел 7. Качество процессов управления
- •Методы построения переходных процессов
- •Метод Акульшина
- •Метод трапеций Солодовникова
- •Точность в установившихся режимах
- •Введение астатизма
- •Метод коэффициентов ошибок
- •Раздел 8. Косвенные критерии качества
- •8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- •Степень устойчивости
- •Степень колебательности
- •Частотные критерии качества
- •Запас устойчивости
- •Оценка быстродействия сар
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Раздел 9. Параметрический синтез типовых регуляторов
- •9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- •9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- •9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- •Формульный метод определения настроек регулятора
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- •10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- •Характеристика нелинейных систем
- •Особенности нелинейных систем
- •Типовые нелинейные элементы системы управления
- •10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- •Основные понятия
- •Фазовые портреты нелинейных систем
- •Методы построения фазовых портретов
- •Интегрирование уравнений фазовых траекторий
- •Метод изоклин
- •Метод припасовывания
- •Метод сшивания
- •Понятие об автоколебаниях
- •Методы исследования автоколебаний Критерий Бендиксона
- •Метод точечного преобразования y1
- •10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- •Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- •10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- •Процедура проверки абсолютной устойчивости
- •Метод гармонической линеаризации
- •Основное уравнение метода гармонического баланса
- •Способ Гольдфарба
- •Коррекция автоколебаний
- •Условия применимости метода гармонического баланса
- •Вибрационная линеаризация
- •Раздел 11. Системы регулирования при случайных воздействиях
- •11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- •Характеристики случайных сигналов
- •11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- •Определение оптимальной передаточной функции системы управления
- •11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- •Расчет ошибок с сау при случайных воздействиях
- •Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- •Статистическая оптимизация систем управления
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- •Импульсный элемент
- •Линейные разностные уравнения
- •Раздел 1. Основные понятия и определения та у 7
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •Решетчатые функции и z-преобразование
- •Определение z-преобразования
- •Основные свойства z-преобразования
- •Цифровые системы управления
- •Дискретное преобразование Лапласа и частотные характеристики
- •Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- •12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- •12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- •12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- •Раздел 13. Анализ устойчивости дискретных систем
- •13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- •Алгебраические критерии устойчивости
- •Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- •Критерий устойчивости Джури
- •13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- •Критерий Найквиста
- •13.3 Методы построения переходных процессов. Косвенные критерии качества
- •Показатели качества в переходном режиме
- •Прямые показатели качества
- •Косвенные показатели качества
- •Особенности переходного процесса дискретных систем
- •Раздел 1. Основные понятия и определения та у 7
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- •14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- •Системы экстремального регулирования
- •Способ градиента
- •14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- •Идентификация и модель для получения оценки
- •Модель для получения оценки
Способ Гольдфарба
Решение основного уравнения метода гармонического баланса (10.5.16) относительно амплитуды и частоты автоколебаний можно получить графически.
В способе Гольдфарба предлагается решить основное уравнение следующим образом относительно частотной характеристики линейной части системы:
.
(10.5.22)
Затем на комплексной плоскости строятся амплитудно-фазовая характеристика и характеристика, соответствующая нелинейному элементу, т. е.
. (10.5.23)
Если эти две характеристики не пересекаются, то периодических процессов в нелинейной системе не возникает.
При наличии пересечений частота автоколебаний определяется по частотной характеристике линейной части системы , а амплитуда – по характеристике нелинейного элемента в точке пересечения.
Поскольку в общем случае точек пересечения и характеристики нелинейного элемента (10.5.23) может быть несколько, в системе могут возникать соответствующие им периодические процессы различных амплитуды и частоты. Причем часть из них будут устойчивыми, а часть – неустойчивыми.
Устойчивость найденного колебательного режима позволяет оценить следующее правило (оно не является строго обоснованным, но зачастую оказывается достаточным). Если при движении по обратной частотной характеристике нелинейного элемента в сторону увеличения амплитуды происходит пересечение амплитудно-фазовой характеристики линейной части «изнутри наружу», то этой точке пересечения соответствуют устойчивые колебания (автоколебания). В противном случае колебания будут неустойчивыми.
На
рис. 10.5.5 характеристики
и
пересекаются в двух точках. Это означает,
что в системе могут возникать два вида
колебаний.
Рис. 10.5.5. Иллюстрация способа Гольдфарба
Причем
первой точке пересечения соответствуют
устойчивые колебания (автоколебания)
с амплитудой
и частотой
,
а второй точке – неустойчивые.
Пример 10.5.3
Определить параметры колебаний и проверить их устойчивость для системы, изображенной на рис. 10.5.3. Здесь нелинейный элемент представляет собой идеальное реле (см. рис. 10.5.2) с уровнем ограничения , а передаточная функция линейной части следующая:
.
получим выражение для амплитудно-частотной характеристики (рис. 10.5.6) в виде
или
.
Запишем выражение для частотной характеристики нелинейного элемента
,
а затем построим годограф (10.5.6)
Рис. 10.5.6. Расположение характеристик (10.5.22) для примера 10.5.3
.
Как
видим, эти характеристики пересекаются
в одной точке, которая соответствует
автоколебаниям. Для определения их
параметров найдем координаты точки
пересечения, для чего приравняем нулю
мнимую часть
:
.
Отсюда
следует, что
.
При найденном значении частоты получим
.
Из условия
определим
амплитуду автоколебаний:
.
Способ Коченбургера
Способ Коченбургера представляет собой второй вариант графического решения основного уравнения метода гармонического баланса (10.5.16). В этом случае его предлагается решить относительно характеристики нелинейного элемента системы следующим образом:
. (10.5..25)
Как
и в способе Гольдфарба, наличие точек
пересечения двух характеристик, согласно
(10.5..25), свидетельствует о наличии в
системе колебательного режима. Причем
частота колебаний определяется по
обратной частотной характеристике
линейной части системы
,
а амплитуда – по характеристике
нелинейного элемента
в точке пересечения (рис. 10.5.6).
Рис. 10.5.6. Иллюстрация способа Коченбургера
Процедура определения автоколебаний аналогична способу Гольдфарба, однако правило формулируется следующим образом. Если при движении по характеристике нелинейного элемента в сторону увеличения амплитуды происходит пересечение обратной частотной характеристики линейной части «снаружи вовнутрь», то этой точке пересечения соответствуют автоколебания. В противном случае колебания будут неустойчивыми.