
- •Раздел 1. Основные понятия и определения та у 7
- •Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- •Раздел 3. Динамические характеристики линейных систем 50
- •Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- •Раздел 5. Характеристики замкнутых аср 88
- •Раздел 6. Анализ устойчивости линейных систем 106
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •Раздел 1. Основные понятия и определения та у
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- •Кибернетика
- •Основные понятия тау
- •Объект автоматического управления
- •Примеры объектов и систем управления
- •Примеры систем управления
- •Функциональные и структурные формы объектов
- •Принципы автоматического регулирования (управления)
- •Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- •1.2 Классификация аср. Задачи курса тау Классификация аср
- •Задачи курса тау
- •Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- •2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- •Дифференциальные уравнения
- •Составление математической модели
- •Линеаризация
- •Передаточные функции сау. Преобразования Лапласа
- •Примеры моделей звеньев
- •Раздел 3. Динамические характеристики линейных систем
- •3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- •3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- •Ориентированные графы систем автоматического управления
- •Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- •Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- •Минимально фазовые и неминимально фазовые звенья
- •Типовые звенья. Характеристики звеньев
- •Раздел 5. Характеристики замкнутых аср
- •Замкнутые системы автоматического управления. Виды обратной связи
- •Передаточные функции в системах автоматического управления
- •Комбинированные аср
- •Каскадные аср
- •Расчёт настроек регуляторов в каскадных аср
- •Последовательность расчёта настроек регуляторов
- •Раздел 6. Анализ устойчивости линейных систем
- •6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- •Критерии устойчивости
- •Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- •Алгебраические критерии устойчивости
- •Критерий устойчивости Гурвица
- •Критерий устойчивости Рауса
- •6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерий устойчивости Найквиста
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Логарифмический критерий устойчивости
- •Логарифмическая форма критерия Найквиста
- •Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- •Раздел 7. Качество процессов управления
- •Методы построения переходных процессов
- •Метод Акульшина
- •Метод трапеций Солодовникова
- •Точность в установившихся режимах
- •Введение астатизма
- •Метод коэффициентов ошибок
- •Раздел 8. Косвенные критерии качества
- •8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- •Степень устойчивости
- •Степень колебательности
- •Частотные критерии качества
- •Запас устойчивости
- •Оценка быстродействия сар
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Раздел 9. Параметрический синтез типовых регуляторов
- •9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- •9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- •9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- •Формульный метод определения настроек регулятора
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- •10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- •Характеристика нелинейных систем
- •Особенности нелинейных систем
- •Типовые нелинейные элементы системы управления
- •10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- •Основные понятия
- •Фазовые портреты нелинейных систем
- •Методы построения фазовых портретов
- •Интегрирование уравнений фазовых траекторий
- •Метод изоклин
- •Метод припасовывания
- •Метод сшивания
- •Понятие об автоколебаниях
- •Методы исследования автоколебаний Критерий Бендиксона
- •Метод точечного преобразования y1
- •10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- •Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- •10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- •Процедура проверки абсолютной устойчивости
- •Метод гармонической линеаризации
- •Основное уравнение метода гармонического баланса
- •Способ Гольдфарба
- •Коррекция автоколебаний
- •Условия применимости метода гармонического баланса
- •Вибрационная линеаризация
- •Раздел 11. Системы регулирования при случайных воздействиях
- •11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- •Характеристики случайных сигналов
- •11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- •Определение оптимальной передаточной функции системы управления
- •11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- •Расчет ошибок с сау при случайных воздействиях
- •Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- •Статистическая оптимизация систем управления
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- •Импульсный элемент
- •Линейные разностные уравнения
- •Раздел 1. Основные понятия и определения та у 7
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •Решетчатые функции и z-преобразование
- •Определение z-преобразования
- •Основные свойства z-преобразования
- •Цифровые системы управления
- •Дискретное преобразование Лапласа и частотные характеристики
- •Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- •12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- •12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- •12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- •Раздел 13. Анализ устойчивости дискретных систем
- •13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- •Алгебраические критерии устойчивости
- •Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- •Критерий устойчивости Джури
- •13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- •Критерий Найквиста
- •13.3 Методы построения переходных процессов. Косвенные критерии качества
- •Показатели качества в переходном режиме
- •Прямые показатели качества
- •Косвенные показатели качества
- •Особенности переходного процесса дискретных систем
- •Раздел 1. Основные понятия и определения та у 7
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- •14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- •Системы экстремального регулирования
- •Способ градиента
- •14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- •Идентификация и модель для получения оценки
- •Модель для получения оценки
10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
При исследованиях нелинейных систем широко используется метод фазового пространства, относящийся к группе графоаналитических методов, описывающих поведение систем при помощи наглядных геометрических представлений - фазовых портретов. Применительно к линейным системам этот метод рассмотрен в разделе 6.3.
Основные понятия
Основным понятием метода является понятие фазового пространства, под которым понимается пространство, в котором прямоугольными координатами точки являются величины, определяющие мгновенное состояние системы, называемые фазовыми координатами.
Метод фазового пространства применим как для линейных, так и для нелинейных систем. Последние в общем случае описываются системой нелинейных дифференциальных уравнений вида:
(10.2.1)
,где y1 , y2 , …, y n - фазовые координаты: t - время;f1 , f2, …, f n - нелинейные функции.
Фазовые координаты y1,y2,…,yn могут иметь любой физический смысл - температура, концентрация и др., но обычно в качестве них выбирают выходную переменную и ее (n−1) производную, т.е.
y1(t)=y(t), y2(t) =y′( t),…,yn( t)=y(n−1)( t)
Наибольшее распространение метод фазового пространства получил при исследовании систем второго порядка. В этом случае фазовым пространством является плоскость. Система дифференциальных уравнений (10.2.1) для системы второго порядка запишется в виде
(10.2.2)
Из этой системы получают уравнение, описывающее фазовый портрет. Для этого необходимо исключить из рассмотрения время, в результате чего получают следующее
(10.2.3)
решение которого дает семейство интегральных кривых на фазовой плоскости, являющихся фазовыми траекториями системы.
Фазовые портреты нелинейных систем
Фазовые портреты нелинейных систем второго порядка определяются решением дифференциального уравнения (10.2.3), которое в данном случае является нелинейным, что и обуславливает характерные особенности этих траекторий.
Линейная система имеет единственное состояние равновесия, определяемое (10.2.3), и характер особой точки полностью определяет поведение системы при любых отклонениях от состояния равновесия. В нелинейной системе состояний равновесия может быть много, следовательно и особых точек также много, но их характер определяет поведение фазовых траекторий только вблизи них. Так, на рис. 10.2.1 изображен типичный фазовый портрет нелинейной системы.
Рисунок 10.2.1 - Фазовый портрет нелинейной системы
Эта система имеет три состояния равновесия в точках А, В, С. Причем точка А является особой точкой типа "центр", а В и С - типа "седло". При рассмотрении свободных движений их амплитуда может вырасти до определенного предела и оставаться далее постоянной, а не расходиться. На фазовой плоскости помимо особых точек фазовый портрет может содержать особые линии, одной из которых является особая траектория - изолированная замкнутая кривая, называемая предельным циклом (рис. 10.2.2). Фазовые траектории могут асимптотически приближаться к предельному циклу - "наматываться" (рис. 10.2.2, а) и "сматываться", уходя в бесконечность (рис. 10.2.2, б).
Предельным циклам соответствуют периодические процессы, в окрестности которых имеют место колебательные процессы (рис. 10.2.3), т.е. предельному циклу соответствует режим автоколебаний в системе.
Рисунок 10.2.2 - Особые фазовые траектории − предельный цикл:а - устойчивый; б - неустойчивый
Р
исунок
10.2.3 ПЕРЕХОДНЫЕ ПРОЦЕССЫ:
А - ПРИ УСТОЙЧИВОМ ПРЕДЕЛЬНОМ ЦИКЛЕ; Б - ПРИ НЕУСТОЙЧИВОМ ПРЕДЕЛЬНОМ ЦИКЛЕ
Предельные циклы могут быть устойчивыми и неустойчивыми, и соответственно автоколебания - устойчивыми и неустойчивыми. Предельный цикл называется устойчивым, если фазовые траектории снаружи и изнутри "наматываются на него" (рис. 10.2.2, а, 10.2.3, а). В такой системе обязательно будет наблюдаться автоколебательный режим.
Предельный цикл называется неустойчивым, если фазовые траектории удаляются от него с обеих сторон, т.е. "сматываются" (рис. 10.2.2, б, 10.2.3, б).
Если начальные условия таковы, что изображающая точка находится внутри предельного цикла, представленного на рис. 10.2.2, а, то она будет двигаться по фазовой траектории к нему, система ведет себя, как неустойчивая система, особая точка - начало координат является неустойчивым фокусом. Если же в начальный момент времени изображающая точка находится снаружи предельного цикла, то она движется по фазовой траектории, приближаясь к нему, система ведет себя как устойчивая система. В этом случае говорят, что рассматриваемая система неустойчива "в малом", устойчива "в большом" и режим автоколебаний устойчивый.
Если рассматривать те же самые начальные условия, но для случая, представленного на рис. 10.2.2, б, то говорят, что система устойчива "в малом" (особая точка - устойчивый фокус), неустойчива "в большом", режим автоколебаний неустойчивый.
Рисунок 10.2.4 - Фазовый портрет системы:
а - полуустойчивый предельный цикл; б - с двумя предельными циклами
Если начальные условия таковы, что одна фазовая траектория "наматывается" на предельный цикл, а другая - "сматывается", то система является неустойчивой и "в малом", и "в большом". В этом случае предельный цикл и соответственно режим автоколебаний называется полуустойчивым (рис. 10.2.4, а). Система может иметь не один, а несколько предельных циклов. Система, фазовый портрет которой изображен на рис. 10.2.4, б, имеет два предельных цикла, один из них - внутренний устойчивый, другой – внешний неустойчивый. Состояние равновесия одно и неустойчивое.
Другим видом особых линий, которые встречаются в нелинейных системах, являются сепаратрисы- кривые, разделяющие области фазового портрета с различным характером фазовых траекторий. Так, в линейных системах второго порядка при рассмотрении фазового портрета типа седло асимптоты гипербол y= ±ωy1 , ω 2 = a0/a2, a1=0 и являются как раз сепаратрисами.
Типичный фазовый портрет нелинейной системы изображен на рис. 10.2.5. Здесь имеются следующие особые точки: точка А - устойчивый фокус, точка В - неустойчивый узел и точка С - седло. В соответствии с этим сепаратрисы разделяют фазовый портрет на четыре области: 1 - затухающих колебаний, 2 - автоколебаний, 3 и 4 - неустойчивых апериодических процессов.
Р
исунок
10.2.5 - Фазовый портрет нелинейной системы
Рисунок 10.2.6 - Фазовый портрет с особой линией
Нелинейные системы с элементами, имеющими зону нечувствительности или сухое трение, имеют не один стационарный режим, а целую область, что на фазовой плоскости выражается "вытягиванием" особой точки в особую линию (рис. 10.2.6).
В заключение следует сказать, что если известен фазовый портрет, то о системе известно все.