
- •Раздел 1. Основные понятия и определения та у 7
- •Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср 29
- •Раздел 3. Динамические характеристики линейных систем 50
- •Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев 69
- •Раздел 5. Характеристики замкнутых аср 88
- •Раздел 6. Анализ устойчивости линейных систем 106
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •Раздел 1. Основные понятия и определения та у
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования Цель и задачи дисциплины
- •Кибернетика
- •Основные понятия тау
- •Объект автоматического управления
- •Примеры объектов и систем управления
- •Примеры систем управления
- •Функциональные и структурные формы объектов
- •Принципы автоматического регулирования (управления)
- •Пример простейшей непрерывной замкнутой системы регулирования и ее функциональная схема
- •1.2 Классификация аср. Задачи курса тау Классификация аср
- •Задачи курса тау
- •Раздел 2. Получение информации для анализа и синтеза аср. Принципы построения математических моделей элементов аср
- •2.1 Принципы построения математических моделей элементов аср. Линеаризация. Примеры моделей звеньев Принципы построения математических моделей элементов аср
- •Дифференциальные уравнения
- •Составление математической модели
- •Линеаризация
- •Передаточные функции сау. Преобразования Лапласа
- •Примеры моделей звеньев
- •Раздел 3. Динамические характеристики линейных систем
- •3.1 Динамические характеристики линейных систем. Типовые входные воздействия, их спектры и изображения. Временные характеристики - импульсная (весовая) и переходная. Свойства. Уравнения свертки
- •3.2 Частотные характеристики, логарифимические частотные характеристики. Связь с передаточной функцией. Свойства и расчет частотных характеристик по передаточной функции
- •Ориентированные графы систем автоматического управления
- •Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- •Раздел 4. Типовые динамические звенья. Переходные и частотные характеристики типовых звеньев
- •Минимально фазовые и неминимально фазовые звенья
- •Типовые звенья. Характеристики звеньев
- •Раздел 5. Характеристики замкнутых аср
- •Замкнутые системы автоматического управления. Виды обратной связи
- •Передаточные функции в системах автоматического управления
- •Комбинированные аср
- •Каскадные аср
- •Расчёт настроек регуляторов в каскадных аср
- •Последовательность расчёта настроек регуляторов
- •Раздел 6. Анализ устойчивости линейных систем
- •6.1 Понятия о критериях устойчивости. Теоремы ляпунова об оценке устойчивости по линеаризованным моделям. Критерии устойчивости рауса и гурвица Понятия о критериях устойчивости
- •Критерии устойчивости
- •Теоремы Ляпунова об оценке устойчивости по линеаризованным моделям
- •Алгебраические критерии устойчивости
- •Критерий устойчивости Гурвица
- •Критерий устойчивости Рауса
- •6.2 Критерии михайлова и найквиста. Анализ устойчивости систем с запаздыванием. Логарифмический критерий устойчивости Частотные критерии устойчивости Принцип аргумента
- •Критерий устойчивости Михайлова
- •Критерий устойчивости Найквиста
- •Устойчивость систем с запаздыванием
- •Об исследовании точности систем с запаздыванием
- •Логарифмический критерий устойчивости
- •Логарифмическая форма критерия Найквиста
- •Структурно-неустойчивые (устойчивые) системы автоматического регулирования
- •Раздел 7. Качество процессов управления
- •Методы построения переходных процессов
- •Метод Акульшина
- •Метод трапеций Солодовникова
- •Точность в установившихся режимах
- •Введение астатизма
- •Метод коэффициентов ошибок
- •Раздел 8. Косвенные критерии качества
- •8.1 Косвенные критерии качества. Корневые критерии качества — степень устойчивости и степень колебательности
- •Степень устойчивости
- •Степень колебательности
- •Частотные критерии качества
- •Запас устойчивости
- •Оценка быстродействия сар
- •Интегральные оценки качества
- •Аналитический расчет квадратичных ит-оценок
- •Раздел 9. Параметрический синтез типовых регуляторов
- •9.1 Параметрический синтез типовых регуляторов Постановка задачи синтеза. Основные методики расчета настроек регуляторов. Условия компенсации низкочастотных возмущений
- •9.2 Расчет настроек на заданную степень колебательности, Расчет настроек на заданный показатель колебательности м и me
- •9.3 Приближенные методики расчета настроек. Расчет настроек в комбинированных и каскадных аср. Робастные методы расчета настроек
- •Формульный метод определения настроек регулятора
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср
- •10.1 Нелинейные системы. Общая характеристика нелинейных аср. Типовые нелинейные модели. Уравнения нелинейных систем
- •Характеристика нелинейных систем
- •Особенности нелинейных систем
- •Типовые нелинейные элементы системы управления
- •10.2 Анализ нелинейных систем на фазовой плоскости. Классификация особых точек. Автоколебания. Метод точечных преобразований
- •Основные понятия
- •Фазовые портреты нелинейных систем
- •Методы построения фазовых портретов
- •Интегрирование уравнений фазовых траекторий
- •Метод изоклин
- •Метод припасовывания
- •Метод сшивания
- •Понятие об автоколебаниях
- •Методы исследования автоколебаний Критерий Бендиксона
- •Метод точечного преобразования y1
- •10.3 Анализ релейных систем. Понятие устойчивости по ляпунову. Устойчивость в малом, большом и целом Устойчивость в малом, большом и целом
- •Исследование устойчивости нелинейных систем. Второй метод Ляпунова
- •10.4 Абсолютная устойчивость положения равновесия. Критерий в.М. Попова Критерий в.М. Попова
- •Процедура проверки абсолютной устойчивости
- •Метод гармонической линеаризации
- •Основное уравнение метода гармонического баланса
- •Способ Гольдфарба
- •Коррекция автоколебаний
- •Условия применимости метода гармонического баланса
- •Вибрационная линеаризация
- •Раздел 11. Системы регулирования при случайных воздействиях
- •11.1 Случайные процессы в аср. Типовые случайные сигналы и их характеристики Случайные процессы в аср
- •Характеристики случайных сигналов
- •11.2 Преобразование случайных сигналов линейным звеном. Идентификация динамических характеристик при случайных процессах Преобразование случайного сигнала линейным динамическим звеном
- •Определение оптимальной передаточной функции системы управления
- •11.3 Задачи анализа и синтеза аср при случайных воздействиях. Расчет дисперсии ошибки, параметрический синтез аср по минимуму дисперсии Задачи анализа и синтеза аср при случайных воздействиях
- •Расчет ошибок с сау при случайных воздействиях
- •Вычисление и минимизация дисперсии сигнала ошибки замкнутой системы
- •Статистическая оптимизация систем управления
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср)
- •Импульсный элемент
- •Линейные разностные уравнения
- •Раздел 1. Основные понятия и определения та у 7
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •Решетчатые функции и z-преобразование
- •Определение z-преобразования
- •Основные свойства z-преобразования
- •Цифровые системы управления
- •Дискретное преобразование Лапласа и частотные характеристики
- •Связь между дискретным и непрерывным преобразованиями Лапласа и непрерывная модель дискретной системы
- •12.2 Уравнения элементов цифровой аср. Цифровой регулятор, идеальный импульсный элемент, формирующий фильтр, приведенная непрерывная часть Непрерывная модель дискретной системы
- •12.3 Преобразование сигналов идеальным импульсным элементом. Теорема Котельникова. Характеристики разомкнутых цаср
- •12.4 Частотные характеристики. Характеристики замкнутых систем Динамические характеристики
- •Раздел 13. Анализ устойчивости дискретных систем
- •13.1 Анализ устойчивости дискретных систем. Необходимые и достаточные условия устойчивости. Аналог критерия гурвица Характеристическое уравнение и основное условие устойчивости
- •Алгебраические критерии устойчивости
- •Исследование устойчивости, основанное на преобразовании единичного круга в левую полуплоскость
- •Критерий устойчивости Джури
- •13.2 Аналоги критериев михайлова, найквиста Частотный критерий устойчивости
- •Критерий Найквиста
- •13.3 Методы построения переходных процессов. Косвенные критерии качества
- •Показатели качества в переходном режиме
- •Прямые показатели качества
- •Косвенные показатели качества
- •Особенности переходного процесса дискретных систем
- •Раздел 1. Основные понятия и определения та у 7
- •1.1 Цель и задачи дисциплины. Кибернетика. Основные понятия тау. Принципы автоматического регулирования 7
- •Раздел 7. Качество процессов управления 140
- •Раздел 8. Косвенные критерии качества 154
- •Раздел 9. Параметрический синтез типовых регуляторов 169
- •Раздел 10. Нелинейные системы. Общая характеристика нелинейных аср 173
- •Раздел 11. Системы регулирования при случайных воздействиях 214
- •Раздел 12. Дискретные (цифровые) автоматические системы регулирования (цаср) 245
- •Раздел 13. Анализ устойчивости дискретных систем 274
- •Раздел 14. Адаптивные системы 293
- •13.4 Бесконечная степень устойчивости. Регуляторы Резвика, Смита Раздел 14. Адаптивные системы
- •14.1 Классификация адаптивных систем. Системы экспериментального регулирования (сэр). Сэр с запоминанием экстремума, градиентные сэр
- •Системы экстремального регулирования
- •Способ градиента
- •14.2 Системы с эталонной моделью. Алгоритмы идентификации Беспоисковые адаптивные системы управления
- •Идентификация и модель для получения оценки
- •Модель для получения оценки
Передаточные функции сау. Преобразования Лапласа
Понятие передаточной функции системы является основополагающим в классической теории автоматического управления (ТАУ), к изучению основ которой мы и приступаем.
Определение передаточной функции связано с преобразование Лапласа и поэтому вначале приведем некоторые основные сведения из этого преобразования.
При использовании преобразования Лапласа некоторой функции времени x(t) ставится в однозначное соответствие функция X(s), где s- оператор Лапласа. Функция времени x(t) называется оригиналом, а функция X(s) ее изображением. Изображение и оригинал связаны соотношением
Приведем некоторые теоремы преобразования Лапласа, которые будут использованы при изложении курса.
Теорема линейности. Для любых действительных или комплексных
(2.1.8)
Знак означает соответствие изображения оригиналу.
Теорема запаздывания. Для любого постоянного > 0
(2.1.9)
Теорема
дифференцирования оригинала. Если
то
(2.1.10)
Применив эту теорему к производным высших порядков, получим
(2.1.11)
При нулевых начальных условиях выражение (2.1.11) упрощается
(2.1.12)
Теорема
интегрирования оригинала. Если
и
то
(2.1.13)
Теорема о начальном значении оригинала.
(2.1.14)
Теорема о конечном значении оригинала.
(2.1.15)
Перейдем к определению передаточной функции. Пусть система или какое-либо звено ее описываются дифференциальным уравнением вида (2.1.10). Полагая начальные условия нулевыми, перейдем в этом уравнении к изображениям по Лапласу. В соответствии с теоремой 3 получим
.
Вынесем в полученном выражении за скобки изображения переменной и входного воздействия и сделаем обозначения
С учетом этих обозначений исходное дифференциальное уравнение в изображениях по Лапласу получит вид
(2.1.16)
Определим теперь зависимость выходной величины от входного воздействия
(2.1.17)
Передаточной функцией системы (звена) W(s) называется отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины при нулевых начальных условиях.
Требование нулевых начальных условий не вносит принципиальных трудностей. В случае x(0)(k) 0, при переходе к изображениям используют теорему 3 в форме (2.1.11), переносят члены, соответствующие начальным условиям в правую часть уравнения и считают их возмущающими воздействиями, относительно которых получают передаточные функции.
Будем
полагать, что все элементы в схеме
замкнутой САУ (2.1.2) описываются уравнениями
вида
(2.1.8).
Некоторым исключением в данном случае
является уравнение объекта управления,
в правую часть которого необходимо
добавить оператор
определяющий возмущающее воздействие.
В соответствии с принципом суперпозии,
справедливым только для линейных
систем, уравнение объекта управления
в изображениях по Лапласу при нулевых
начальных условиях запишется в виде
В
этом выражении
Тогда можно записать
передаточная
функция объекта управления по
регулирующему воздействию.
передаточная
функция объекта управления по возмущению.
Аналогично для других элементов схемы
запишем
передаточная
функция логико-вычислительной подсистемы;
передаточная
функция исполнительной подсистемы;
передаточная
функция цепи обратной связи
(информационно-измерительной подсистемы).
Теперь схему замкнутой САУ можно изобразить, так как показано на рис.2.1.2.
Рис. 2.1.2. Структурная схема САУ
Схема системы автоматического управления, изображенная в виде соединения передаточных функций составляющих ее звеньев, называется структурной схемой.
На основании полученной схемы и выражений (2.1.16) и (2.1.17) составим систему уравнений.
(2.1.18)
Составим и раскроем характеристический определитель системы (2.1.18).
.
(2.1.19)
Так как звенья с передаточными функциями W1(s) , W2 (s),W0(s) входят в прямую цепь регулирования, то передаточная функция Wп(s)=W1(s)W2(s)W0(s) называется передаточной функцией прямой цепи. Составив и раскрыв замещенный определитель по отношению к регулируемой величине, получим
Тогда
(2.1.20)
Передаточная
функция
называется передаточной функцией
замкнутой системы по задающему
(регулирующему) воздействию.
Передаточная
функция
называется передаточной функцией
разомкнутой системы.
Передаточная
функция
называется передаточной функцией
замкнутой системы по возмущению.
Составим и раскроем замещенный определитель относительно ошибки регулирования E(s)
Тогда
(2.1.21)
Передаточная
функция
называется передаточной функцией
замкнутой системы по ошибке от задающего
воздействия.
Передаточная
функция
называется передаточной функцией
замкнутой системы по ошибке от
возмущающего воздействия.
Нетрудно видеть, что при единичной обратной связи, т.е. при Woc(s)=1, выполняется равенство
(2.1.22)