- •Методические рекомендации к курсу «теория систем и системный анализ»
- •Предисловие
- •Введение
- •Лекция №1 Тема: Основные понятия и определения
- •1. Краткая историческая справка
- •2. Связь предмета с другими дисциплинами учебного плана
- •3. Определение системы
- •4. Улучшение систем
- •5. Проектирование систем
- •6.Сущность и принципы системного подхода
- •7. Основные характеристики системы
- •Элемент
- •Подсистема
- •Окружающая среда
- •Структура
- •Иерархия
- •Состояние
- •Более полно состояние можно определить, если рассмотреть элементы ( компоненты, функциональные блоки), определяющие состояние.
- •Поведение
- •Внешняя среда
- •Процесс преобразования
- •Входные элементы и ресурсы
- •Выходные элементы
- •Назначение и функция
- •Признаки
- •Задачи и цели
- •Проблемы согласования целей
- •Принятия решений
- •Отношение
- •Системный подход с точки зрения управления
- •Определение границ системы в целом и границ окружающей ее среды.
- •10. Установление целей системы.
- •Описания управления системой.
- •Лекция №2 Тема: Элементы теории алгоритмов
- •1. Алфавитный оператор
- •2. Запись алгоритмов. 3. Оперативные схемы. 4. Граф-схемы алгоритмов.
- •5. Построение алгоритмов
- •Лекция №3 Тема: Элементы теории Марковских процессов
- •1. Марковский процесс
- •2. Классификация состояний
- •3. Отображение марковской цепи в виде графа
- •4. Управляемые марковские цепи
- •Лекция №4 Тема: Виды информационных систем
- •1. Понятие информации
- •1.1. Информационное поле.
- •1.2. Классификация и основные свойства единиц информации
- •2. Классификация информационных систем
- •2.1. По происхождению.
- •2. 2. По степени объективности существования.
- •По виду отображаемого объекта. Технические, биологические и др. Систем.
- •2.4. По виду формализованного аппарата представления системы (детерминированные и стохастические).
- •2.5. По степени взаимосвязи с окружением (открытые, закрытые, относительно обособленные):
- •2.6. По степени внутренней организации (хорошо организованные, плохо организованные системы и самоорганизующиеся). Хорошо организованные системы.
- •Плохо организованные системы.
- •Самоорганизующиеся системы.
- •2.7. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы).
- •2.8. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы); Сложность системы
- •Структурная сложность
- •Многообразие
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Задачи исследования сложных систем.
- •Задача исследования системы.
- •2. 9. По состоянию во времени (статические и динамичные). Шкалы времени
- •2.10. По обусловленности процессов управления (управляемые и самоуправляемые).
- •2.12По методам моделирования процесса развития (методы индукционного и редукционного моделирования). Лекция №5 Тема: Этапы исследования систем
- •1. Системный подход и системный анализ
- •1.1. Системный подход
- •1.2. Системные исследования
- •1.3. Системный анализ
- •2. Этапы исследования систем
- •Этап определения системы
- •2.2. Этап анализа структуры системы
- •2.3. Этап формулирования общей цели и критерия системы
- •2.4. Этап декомпозиции цели управления системой и определение потребностей в средствах управления
- •Этап выявления ресурсов и процессов, композиция целей
- •Этап прогнозирования и анализ условий развития системы
- •Этап оценки целей и средств их достижения
- •Этап отбора вариантов
- •2.9. Этап диагностики существования системы
- •2.10. Этап построения комплексной программы развития
- •2.11. Этап проектирования систем организационного управления
- •Лекция №6 Тема: Закономерности систем
- •Целостность
- •Интегративность
- •Коммуникативность
- •Иерархичность
- •5. Эквифинальность
- •6. Историчность
- •7. Закон необходимого разнообразия
- •8. Закономерность осуществимости и потенциальной эффективности систем
- •9. Закономерность целеобразования
- •Лекция №7 Тема: Уровни представления информационных систем
- •1. Методы и этапы описания систем
- •2. Неформальные методы
- •2.1. Методы мозговой атаки
- •2.2. Методы сценариев
- •2.3. Методы экспертных оценок
- •2.4. Методы типа «Дельфи»
- •3. Графические методы описания систем
- •3.1. Методы типа дерева целей
- •4. Количественные методы описания систем
- •4.1. Морфологические методы
- •4.2. Три метода морфологического исследования
- •5. Уровни описания систем
- •5.1. Высшие уровни описания систем
- •5.2. Низшие уровни описания систем
- •Лекция №8 Тема: Методы системного анализа.
- •1. Методы системного анализа
- •2. Классификация методов системного анализа
- •Методы описания исследуемого объекта
- •3. Методика системного анализа.
- •Тема: Обработка измерений при анализе систем
- •1. Метод наименьших квадратов
- •2. Сущность метода статистических испытаний (метода Монте-Карло)
- •2.1. Разыгрывание дискретной случайной величины Разыгрывание полной группы событий
- •Приближенное разыгрывание нормальной случайной величины
- •2.2. Разыгрывание двумерной случайной величины
- •Лекция №10 Тема: Этапы системного анализа
- •1.Общие положения
- •2. Содержательная постановка задачи
- •3. Построение модели изучаемой системы в общем случае.
- •4. Моделирование в условиях определенности.
- •5. Моделирование системы в условиях неопределенности
- •6. Моделирование в условиях противодействия, игровые модели.
- •Лекция № 11. Тема: Формы представления модели
- •1. Нормальная форма Коши
- •2. Системы нелинейных дифференциальных уравнений различных порядков
- •3. Графы
- •4. Гиперграфы
- •Лекция №12. Тема: Теоретико-множественное описание систем
- •1. Предположения о характере функционирования систем
- •2. Система, как отношение на абстрактных множествах
- •3. Временные, алгебраические и функциональные системы
- •4. Временные системы в терминах «вход — выход»
- •5. Входные сигналы системы.
- •6. Выходные сигналы системы.
- •Лекция №13. Тема: Динамическое описание систем
- •1. Детерминированная система без последствий
- •2. Детерминированные системы с последствием
- •3. Стохастические системы
- •4. Агрегатное описание систем
- •Лекция №14. Тема: Алгоритмы на топологических моделях.
- •1. Задачи анализа топологии
- •2. Представление информации о топологии моделей
- •3. Поиск контуров и путей по матрице смежности
- •4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •5. Сравнение алгоритмов топологического анализа
- •6. Декомпозиция модели на топологическом ранге неопределенности
- •7. Сортировка модели на топологическом ранге неопределенности
- •Моделирование систем
- •1. Моделирование систем
- •2. Математическое моделирование
- •3. Информационное моделирование
- •4. Ситуационное моделирование
3. Информационное моделирование
Информационное моделирование (часто называемое кибернетическим) связано с исследованием моделей, в которых отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируются некоторые связи между выходами и входами. Таким образом, в основе информационных (кибернетических) моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести данную функцию на имитационной модели, причем на совершенно другом математическом языке и, естественно, иной физической реализации процесса.
Структурно-системное моделирование базируется на некоторых специфических особенностях структур определенного вида, используя их как средство исследования систем или разрабатывая на их основе с применением других методов формализованного представления систем (теоретико-множественных, лингвистических и т. п.) специфические подходы к моделированию.
Структурно-системное моделирование включает:
- методы сетевого моделирования;
- сочетание методов структуризации с лингвистическими (языковыми);
структурный подход в направлении формализации построения и исследования структур разного типа (иерархических, матричных, произвольных графов) на основе теоретико-множественных представлений и понятия номинальной шкалы теории измерений.
4. Ситуационное моделирование
Ситуационное моделирование основано на модельной теории мышления, в рамках которой можно описать основные механизмы регулирования процессов принятия решений. В основе модельной теории мышления лежит представление о формировании в структурах мозга информационной модели объекта и внешнего мира. Эта информация воспринимается человеком на базе уже имеющихся у него знаний и опыта. Целесообразное поведение человека строится путем формирования целевой ситуации и мысленного преобразования исходной ситуации в целевую. Основой построения модели является описание объекта в виде совокупности элементов, связанных между собой определенными отношениями, отображающими семантику предметной области. Модель объекта имеет многоуровневую структуру и представляет собой тот информационный контекст, на фоне которого протекают процессы управления. Чем богаче информационная модель объекта и выше возможности ее манипулирования, тем лучше и многообразие качество принимаемых решений при управлении.
При реальном моделировании используется возможность исследования характеристик либо на реальном объекте целиком, либо на его части. Такие исследования проводятся как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т. д.). Реальное моделирование является наиболее адекватным, но его возможности ограничены. Например, проведение реального моделирования АСУП требует, во-первых, наличия такой АСУ и, во-вторых, проведения экспериментов с управляемым объектом, т. е. предприятием, что в большинстве случаев невозможно.
Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. Натурный эксперимент подразделяется на научный эксперимент, комплексные испытания и производственный эксперимент. Научный эксперимент характеризуется широким использованием средств автоматизации проведения, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента. В соответствии с этим появилось новое научное направление — автоматизация научного эксперимента и новая специализация в рамках специальности АСУ — АСНИ (автоматизированные системы научных исследований и комплексных испытаний). Одна из разновидностей эксперимента — комплексные испытания, когда вследствие повторения испытаний объектов в целом (или больших частей системы) выявляются общие закономерности о характеристиках качества, надежности этих объектов. В этом случае моделирование осуществляется путем обработки и обобщения сведений о группе однородных явлений. Наряду со специально организованными испытаниями возможна реализация натурного моделирования путем обобщения опыта, накопленного в ходе производственного процесса, т. е. можно говорить о производственном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и получают его обобщенные характеристики. Необходимо помнить про отличие эксперимента от реального протекания процесса. Оно заключается в том, что в эксперименте могут появиться отдельные критические ситуации и определиться границы устойчивости процесса. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процесс функционирования объекта.
Другим видом реального моделирования является физическое моделирование. Оно отличается от натурального тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени или рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, фиксируемые в некоторый момент времени. Наибольшие сложность и интерес с точки зрения корректности получаемых результатов представляет физическое моделирование в реальном масштабе времени.