- •Методические рекомендации к курсу «теория систем и системный анализ»
- •Предисловие
- •Введение
- •Лекция №1 Тема: Основные понятия и определения
- •1. Краткая историческая справка
- •2. Связь предмета с другими дисциплинами учебного плана
- •3. Определение системы
- •4. Улучшение систем
- •5. Проектирование систем
- •6.Сущность и принципы системного подхода
- •7. Основные характеристики системы
- •Элемент
- •Подсистема
- •Окружающая среда
- •Структура
- •Иерархия
- •Состояние
- •Более полно состояние можно определить, если рассмотреть элементы ( компоненты, функциональные блоки), определяющие состояние.
- •Поведение
- •Внешняя среда
- •Процесс преобразования
- •Входные элементы и ресурсы
- •Выходные элементы
- •Назначение и функция
- •Признаки
- •Задачи и цели
- •Проблемы согласования целей
- •Принятия решений
- •Отношение
- •Системный подход с точки зрения управления
- •Определение границ системы в целом и границ окружающей ее среды.
- •10. Установление целей системы.
- •Описания управления системой.
- •Лекция №2 Тема: Элементы теории алгоритмов
- •1. Алфавитный оператор
- •2. Запись алгоритмов. 3. Оперативные схемы. 4. Граф-схемы алгоритмов.
- •5. Построение алгоритмов
- •Лекция №3 Тема: Элементы теории Марковских процессов
- •1. Марковский процесс
- •2. Классификация состояний
- •3. Отображение марковской цепи в виде графа
- •4. Управляемые марковские цепи
- •Лекция №4 Тема: Виды информационных систем
- •1. Понятие информации
- •1.1. Информационное поле.
- •1.2. Классификация и основные свойства единиц информации
- •2. Классификация информационных систем
- •2.1. По происхождению.
- •2. 2. По степени объективности существования.
- •По виду отображаемого объекта. Технические, биологические и др. Систем.
- •2.4. По виду формализованного аппарата представления системы (детерминированные и стохастические).
- •2.5. По степени взаимосвязи с окружением (открытые, закрытые, относительно обособленные):
- •2.6. По степени внутренней организации (хорошо организованные, плохо организованные системы и самоорганизующиеся). Хорошо организованные системы.
- •Плохо организованные системы.
- •Самоорганизующиеся системы.
- •2.7. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы).
- •2.8. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы); Сложность системы
- •Структурная сложность
- •Многообразие
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Задачи исследования сложных систем.
- •Задача исследования системы.
- •2. 9. По состоянию во времени (статические и динамичные). Шкалы времени
- •2.10. По обусловленности процессов управления (управляемые и самоуправляемые).
- •2.12По методам моделирования процесса развития (методы индукционного и редукционного моделирования). Лекция №5 Тема: Этапы исследования систем
- •1. Системный подход и системный анализ
- •1.1. Системный подход
- •1.2. Системные исследования
- •1.3. Системный анализ
- •2. Этапы исследования систем
- •Этап определения системы
- •2.2. Этап анализа структуры системы
- •2.3. Этап формулирования общей цели и критерия системы
- •2.4. Этап декомпозиции цели управления системой и определение потребностей в средствах управления
- •Этап выявления ресурсов и процессов, композиция целей
- •Этап прогнозирования и анализ условий развития системы
- •Этап оценки целей и средств их достижения
- •Этап отбора вариантов
- •2.9. Этап диагностики существования системы
- •2.10. Этап построения комплексной программы развития
- •2.11. Этап проектирования систем организационного управления
- •Лекция №6 Тема: Закономерности систем
- •Целостность
- •Интегративность
- •Коммуникативность
- •Иерархичность
- •5. Эквифинальность
- •6. Историчность
- •7. Закон необходимого разнообразия
- •8. Закономерность осуществимости и потенциальной эффективности систем
- •9. Закономерность целеобразования
- •Лекция №7 Тема: Уровни представления информационных систем
- •1. Методы и этапы описания систем
- •2. Неформальные методы
- •2.1. Методы мозговой атаки
- •2.2. Методы сценариев
- •2.3. Методы экспертных оценок
- •2.4. Методы типа «Дельфи»
- •3. Графические методы описания систем
- •3.1. Методы типа дерева целей
- •4. Количественные методы описания систем
- •4.1. Морфологические методы
- •4.2. Три метода морфологического исследования
- •5. Уровни описания систем
- •5.1. Высшие уровни описания систем
- •5.2. Низшие уровни описания систем
- •Лекция №8 Тема: Методы системного анализа.
- •1. Методы системного анализа
- •2. Классификация методов системного анализа
- •Методы описания исследуемого объекта
- •3. Методика системного анализа.
- •Тема: Обработка измерений при анализе систем
- •1. Метод наименьших квадратов
- •2. Сущность метода статистических испытаний (метода Монте-Карло)
- •2.1. Разыгрывание дискретной случайной величины Разыгрывание полной группы событий
- •Приближенное разыгрывание нормальной случайной величины
- •2.2. Разыгрывание двумерной случайной величины
- •Лекция №10 Тема: Этапы системного анализа
- •1.Общие положения
- •2. Содержательная постановка задачи
- •3. Построение модели изучаемой системы в общем случае.
- •4. Моделирование в условиях определенности.
- •5. Моделирование системы в условиях неопределенности
- •6. Моделирование в условиях противодействия, игровые модели.
- •Лекция № 11. Тема: Формы представления модели
- •1. Нормальная форма Коши
- •2. Системы нелинейных дифференциальных уравнений различных порядков
- •3. Графы
- •4. Гиперграфы
- •Лекция №12. Тема: Теоретико-множественное описание систем
- •1. Предположения о характере функционирования систем
- •2. Система, как отношение на абстрактных множествах
- •3. Временные, алгебраические и функциональные системы
- •4. Временные системы в терминах «вход — выход»
- •5. Входные сигналы системы.
- •6. Выходные сигналы системы.
- •Лекция №13. Тема: Динамическое описание систем
- •1. Детерминированная система без последствий
- •2. Детерминированные системы с последствием
- •3. Стохастические системы
- •4. Агрегатное описание систем
- •Лекция №14. Тема: Алгоритмы на топологических моделях.
- •1. Задачи анализа топологии
- •2. Представление информации о топологии моделей
- •3. Поиск контуров и путей по матрице смежности
- •4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •5. Сравнение алгоритмов топологического анализа
- •6. Декомпозиция модели на топологическом ранге неопределенности
- •7. Сортировка модели на топологическом ранге неопределенности
- •Моделирование систем
- •1. Моделирование систем
- •2. Математическое моделирование
- •3. Информационное моделирование
- •4. Ситуационное моделирование
4. Улучшение систем
Улучшением систем называют процесс, обеспечивающий работу системы или системы согласно ожиданиям. Улучшение системы означает выявление причин отклонений от заданных норм работы системы или возможностей по улучшению работы системы, т.е. получение результатов, которые наиболее бы соответствовали целям проекта; сам проект под сомнение не ставится. Когда стоит проблема улучшить систему, мы прежде всего определяем задачу, т.е. выполняем шаг, ограничивающий сферу нашего исследования. Мы точно описываем характер системы и устанавливаем составляющие ее подсистемы. Определив задачу и установив систему и составляющие ее подсистемы, мы путем анализа ищем элементы и их связи, которые могут дать ответы на наши вопросы.
Улучшение систем связано с проблемами, относящимися к работе систем, и имеет исходной посылкой тот факт, что все отклонения вызваны дефектами в элементах систем, и их можно объяснить специфическими причинами. Функция, назначение, структура и взаимодействие с другими системами при этом под сомнение не ставятся.
Методы, используемые для улучшения систем, базируются на научном методе, и их называют научной парадигмой. А методы, применяемые для проектирования систем, имеют основой общую теорию систем и известны как системная парадигма.
5. Проектирование систем
Процесс проектирования включает преобразование и изменение, но настолько отличается от процесса улучшения систем, что возникает необходимость подчеркнуть различия между ними в целях, масштабе, методологии, этике и результатах. Проектирование – творческий процесс, который ставит под сомнение предпосылки, лежащие в основе старых форм.
Оно требует совершенно новых взглядов и подхода, чтобы получить новые решения, способные избавить нас от «болезней» современного мира.
При улучшении систем возникающие вопросы связаны с обеспечением нормальной работы уже существующих систем. В то же время системный подход является в своей основе методологией проектирования систем, поэтому при его использовании ставится под сомнение сам характер данной системы и ее роль в рамках более широкой системы.
Системный подход, при котором устанавливаются отношения между данной системой и всеми другими системами, в которые она входит или с которыми она связана, называют экстроспективным, так как анализ направлен от системы к ее окружению в отличие от метода улучшения систем, который является интроспективным – рассмотрение направлено внутрь системы. Улучшение систем основано на аналитическом методе, когда условия работы данной системы и соответствующих элементов изучаются методами дедукции и редукции, чтобы определить причину отклонений от нормы. При системном подходе идут от частного к общему, а проект наилучшей системы определяется методами индукции и синтеза.
Проектирование системы в целом означает создание оптимальной конфигурации системы.
6.Сущность и принципы системного подхода
Более важно понять преимущество взгляда на этот мир с позиций системного подхода: возможность ставить и решать, по крайней мере, две задачи:
расширить и углубить собственные представления о “механизме” взаимодействий объектов в системе; изучить и, возможно, открыть новые её свойства;
повысить эффективность системы в том плане ее функционирования, который интересует нас больше всего.
ТССА, как отрасль науки, может быть разделена на две, достаточно условные части:
· теоретическую: использующую такие отрасли как теория вероятностей, теория информации, теория игр, теория графов, теория расписаний, теория решений, топология, факторный анализ и др.;
· прикладную, основанную на прикладной математической статистике, методах исследовании операций, системотехнике и т. п. Таким образом, ТССА широко использует достижения многих отраслей науки и этот “захват” непрерывно расширяется.
Вместе с тем, в теории систем имеется свое “ядро”, свой особый метод — системный подход к возникающим задачам. Сущность этого метода достаточно проста: все элементы системы и все операции в ней должны рассматриваться только как одно целое, только в совокупности, только во взаимосвязи друг с другом.
· Итак, первый принцип ТССА — это требование рассматривать совокупность элементов системы как одно целое или, более жестко, — запрет на рассмотрение системы как простого объединения элементов.
· Второй принцип заключается в признании того, что свойства системы не просто сумма свойств ее элементов. Тем самым постулируется возможность того, что система обладает особыми свойствами, которых может и не быть у отдельных элементов.
· Весьма важным атрибутом системы является ее эффективность. Теоретически доказано, что всегда существует функция ценности системы — в виде зависимости ее эффективности (почти всегда это экономический показатель) от условий построения и функционирования. Кроме того, эта функция ограничена, а значит можно и нужно искать ее максимум.
Максимум эффективности системы может считаться третьим ее основным принципом.
·Четвертый принцип запрещает рассматривать данную систему в отрыве от окружающей ее среды — как автономную, обособленную. Это означает обязательность учета внешних связей или, в более общем виде, требование рассматривать анализируемую систему как часть (подсистему) некоторой более общей системы.
· Согласившись с необходимостью учета внешней среды, признавая логичность рассмотрения данной системы как части некоторой, большей ее, мы приходим к пятому принципу ТССА — возможности (а иногда и необходимости) деления данной системы на части, подсистемы. Если последние оказываются недостаточно просты для анализа, с ними поступают точно также. Но в процессе такого деления нельзя нарушать предыдущие принципы — пока они соблюдены, деление оправдано, разрешено в том смысле, что гарантирует применимость практических методов, приемов, алгоритмов решения задач системного анализа.
Все изложенное выше позволяет формализовать определение термина система в виде — многоуровневая конструкция из взаимодействующих элементов, объединяемых в подсистемы нескольких уровней для достижения единой цели функционирования (целевой функции).