- •Методические рекомендации к курсу «теория систем и системный анализ»
- •Предисловие
- •Введение
- •Лекция №1 Тема: Основные понятия и определения
- •1. Краткая историческая справка
- •2. Связь предмета с другими дисциплинами учебного плана
- •3. Определение системы
- •4. Улучшение систем
- •5. Проектирование систем
- •6.Сущность и принципы системного подхода
- •7. Основные характеристики системы
- •Элемент
- •Подсистема
- •Окружающая среда
- •Структура
- •Иерархия
- •Состояние
- •Более полно состояние можно определить, если рассмотреть элементы ( компоненты, функциональные блоки), определяющие состояние.
- •Поведение
- •Внешняя среда
- •Процесс преобразования
- •Входные элементы и ресурсы
- •Выходные элементы
- •Назначение и функция
- •Признаки
- •Задачи и цели
- •Проблемы согласования целей
- •Принятия решений
- •Отношение
- •Системный подход с точки зрения управления
- •Определение границ системы в целом и границ окружающей ее среды.
- •10. Установление целей системы.
- •Описания управления системой.
- •Лекция №2 Тема: Элементы теории алгоритмов
- •1. Алфавитный оператор
- •2. Запись алгоритмов. 3. Оперативные схемы. 4. Граф-схемы алгоритмов.
- •5. Построение алгоритмов
- •Лекция №3 Тема: Элементы теории Марковских процессов
- •1. Марковский процесс
- •2. Классификация состояний
- •3. Отображение марковской цепи в виде графа
- •4. Управляемые марковские цепи
- •Лекция №4 Тема: Виды информационных систем
- •1. Понятие информации
- •1.1. Информационное поле.
- •1.2. Классификация и основные свойства единиц информации
- •2. Классификация информационных систем
- •2.1. По происхождению.
- •2. 2. По степени объективности существования.
- •По виду отображаемого объекта. Технические, биологические и др. Систем.
- •2.4. По виду формализованного аппарата представления системы (детерминированные и стохастические).
- •2.5. По степени взаимосвязи с окружением (открытые, закрытые, относительно обособленные):
- •2.6. По степени внутренней организации (хорошо организованные, плохо организованные системы и самоорганизующиеся). Хорошо организованные системы.
- •Плохо организованные системы.
- •Самоорганизующиеся системы.
- •2.7. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы).
- •2.8. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы); Сложность системы
- •Структурная сложность
- •Многообразие
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Задачи исследования сложных систем.
- •Задача исследования системы.
- •2. 9. По состоянию во времени (статические и динамичные). Шкалы времени
- •2.10. По обусловленности процессов управления (управляемые и самоуправляемые).
- •2.12По методам моделирования процесса развития (методы индукционного и редукционного моделирования). Лекция №5 Тема: Этапы исследования систем
- •1. Системный подход и системный анализ
- •1.1. Системный подход
- •1.2. Системные исследования
- •1.3. Системный анализ
- •2. Этапы исследования систем
- •Этап определения системы
- •2.2. Этап анализа структуры системы
- •2.3. Этап формулирования общей цели и критерия системы
- •2.4. Этап декомпозиции цели управления системой и определение потребностей в средствах управления
- •Этап выявления ресурсов и процессов, композиция целей
- •Этап прогнозирования и анализ условий развития системы
- •Этап оценки целей и средств их достижения
- •Этап отбора вариантов
- •2.9. Этап диагностики существования системы
- •2.10. Этап построения комплексной программы развития
- •2.11. Этап проектирования систем организационного управления
- •Лекция №6 Тема: Закономерности систем
- •Целостность
- •Интегративность
- •Коммуникативность
- •Иерархичность
- •5. Эквифинальность
- •6. Историчность
- •7. Закон необходимого разнообразия
- •8. Закономерность осуществимости и потенциальной эффективности систем
- •9. Закономерность целеобразования
- •Лекция №7 Тема: Уровни представления информационных систем
- •1. Методы и этапы описания систем
- •2. Неформальные методы
- •2.1. Методы мозговой атаки
- •2.2. Методы сценариев
- •2.3. Методы экспертных оценок
- •2.4. Методы типа «Дельфи»
- •3. Графические методы описания систем
- •3.1. Методы типа дерева целей
- •4. Количественные методы описания систем
- •4.1. Морфологические методы
- •4.2. Три метода морфологического исследования
- •5. Уровни описания систем
- •5.1. Высшие уровни описания систем
- •5.2. Низшие уровни описания систем
- •Лекция №8 Тема: Методы системного анализа.
- •1. Методы системного анализа
- •2. Классификация методов системного анализа
- •Методы описания исследуемого объекта
- •3. Методика системного анализа.
- •Тема: Обработка измерений при анализе систем
- •1. Метод наименьших квадратов
- •2. Сущность метода статистических испытаний (метода Монте-Карло)
- •2.1. Разыгрывание дискретной случайной величины Разыгрывание полной группы событий
- •Приближенное разыгрывание нормальной случайной величины
- •2.2. Разыгрывание двумерной случайной величины
- •Лекция №10 Тема: Этапы системного анализа
- •1.Общие положения
- •2. Содержательная постановка задачи
- •3. Построение модели изучаемой системы в общем случае.
- •4. Моделирование в условиях определенности.
- •5. Моделирование системы в условиях неопределенности
- •6. Моделирование в условиях противодействия, игровые модели.
- •Лекция № 11. Тема: Формы представления модели
- •1. Нормальная форма Коши
- •2. Системы нелинейных дифференциальных уравнений различных порядков
- •3. Графы
- •4. Гиперграфы
- •Лекция №12. Тема: Теоретико-множественное описание систем
- •1. Предположения о характере функционирования систем
- •2. Система, как отношение на абстрактных множествах
- •3. Временные, алгебраические и функциональные системы
- •4. Временные системы в терминах «вход — выход»
- •5. Входные сигналы системы.
- •6. Выходные сигналы системы.
- •Лекция №13. Тема: Динамическое описание систем
- •1. Детерминированная система без последствий
- •2. Детерминированные системы с последствием
- •3. Стохастические системы
- •4. Агрегатное описание систем
- •Лекция №14. Тема: Алгоритмы на топологических моделях.
- •1. Задачи анализа топологии
- •2. Представление информации о топологии моделей
- •3. Поиск контуров и путей по матрице смежности
- •4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •5. Сравнение алгоритмов топологического анализа
- •6. Декомпозиция модели на топологическом ранге неопределенности
- •7. Сортировка модели на топологическом ранге неопределенности
- •Моделирование систем
- •1. Моделирование систем
- •2. Математическое моделирование
- •3. Информационное моделирование
- •4. Ситуационное моделирование
3. Временные, алгебраические и функциональные системы
Временные системы.
Если элементы одного из объектов системы есть функции, например v: Тv®Av, то этот объект называют функциональным.. В случае, когда области определения всех функций для данного объекта V одинаковы, т. е. каждая функция vÎV является отображением Т в A, v : Т®А, то Т называется индексирующим множеством для v, a A — алфавитом объекта Т. Если индексирующее множество линейно упорядочено, то его называют множеством моментов времени. Функции, определенные на множествах моментов времени, принято называть (абстрактными) функциями времени. Объект, элементами которого являются временные функции, называют временным объектом, а системы, определенные на временных объектах, — временными системами.
Особый интерес для исследования представляют системы, у которых элементы и входного и выходного объектов определены на одном и том же множестве: ХÌАT и YÌBT. В этом случае под системой понимается отношение
Другой путь наделения объектов системы математическими структурами состоит в определении одной или нескольких операций, относительно которых V становится алгеброй. В самом простейшем случае определяется бинарная операция R : V*V®V и предполагается, что в V можно выделить такое подмножество W, зачастую конечное, что любой элемент vÎ V можно получить в результате применения операции R к элементам из W или к элементам, уже построенным из элементов множества. Неподобным образом. В этом случае W называют множеством производящих элементов или алфавитом объекта, а его элементы — символами, а элементы объекта V — словами. Если R есть операция сочленения, то слова — это просто последовательности элементов алфавита W.
Необходимо иметь в виду, что алфавит временного объекта — это не совсем то же самое, что алфавит алгебраического объекта. Для объектов с конечными алфавитами — это обычно одни и те же множества. Но как только алфавит становится бесконечным, возникают трудности: множество производящих элементов и область функций времени оказываются различными множествами, в общем случае даже разной мощности.
Итак, системой называется отношение на непустых (абстрактных) множествах:
SÌx{Vi, iÎI}.
Если множество индексов конечно, то выражение (13.1) можно переписать в виде
SÌV1*V2*…*Vn. (2)
Множество Х= Ä{Vi. iÎIx,} называется входным объектом, а множество Y=Ä{Vi,iÎIy} - выходным объектом системы. Тогда система S определяется отношением
S Ì X* У
и называется системой «вход — выход» («черный ящик»).
Если S является функцией
S : X®Y.
то система называется функциональной.
4. Временные системы в терминах «вход — выход»
Множество моментов времени. Первая часть первого предположения о характере функционирования систем гласит: система функционирует во времени. Множество моментов времени t, в которые рассматривается функционирование системы, обозначим Т, t ÎТ. Множество T будем считать подмножеством множества действительных чисел. В частности, оно может быть конечным или счетным.
В зависимости от характера множества Т различают: дискретное, непрерывное и дискретно-непрерывное время. На практике часто представляют интерес только такие множества Т, элементы которых располагаются в изолированных точках числовой оси. В этом случае говорят, что система функционирует в дискретном времени, например контактные схемы, конечные автоматы, вычислительные устройства ЭВМ и т. д. Вместо моментов времени t0, tl , ... часто пишут ряд натуральных чисел 0, 1,2, ..., которые называются тактами.
Множество Т представляет собой множество некоторого (конечного или бесконечного) интервала числовой оси. В этом случае говорят, что система функционирует в непрерывном времени, например механические и электрические системы, системы, рассматриваемые в теории автоматического регулирования, и т. д.
Не исключены случаи, когда множество Т имеет дискретно-непрерывный характер: на одних, интервалах числовой прямой моменты t Î Т заполняют их целиком, а на других — располагаются в изолированных точках.
