- •Методические рекомендации к курсу «теория систем и системный анализ»
- •Предисловие
- •Введение
- •Лекция №1 Тема: Основные понятия и определения
- •1. Краткая историческая справка
- •2. Связь предмета с другими дисциплинами учебного плана
- •3. Определение системы
- •4. Улучшение систем
- •5. Проектирование систем
- •6.Сущность и принципы системного подхода
- •7. Основные характеристики системы
- •Элемент
- •Подсистема
- •Окружающая среда
- •Структура
- •Иерархия
- •Состояние
- •Более полно состояние можно определить, если рассмотреть элементы ( компоненты, функциональные блоки), определяющие состояние.
- •Поведение
- •Внешняя среда
- •Процесс преобразования
- •Входные элементы и ресурсы
- •Выходные элементы
- •Назначение и функция
- •Признаки
- •Задачи и цели
- •Проблемы согласования целей
- •Принятия решений
- •Отношение
- •Системный подход с точки зрения управления
- •Определение границ системы в целом и границ окружающей ее среды.
- •10. Установление целей системы.
- •Описания управления системой.
- •Лекция №2 Тема: Элементы теории алгоритмов
- •1. Алфавитный оператор
- •2. Запись алгоритмов. 3. Оперативные схемы. 4. Граф-схемы алгоритмов.
- •5. Построение алгоритмов
- •Лекция №3 Тема: Элементы теории Марковских процессов
- •1. Марковский процесс
- •2. Классификация состояний
- •3. Отображение марковской цепи в виде графа
- •4. Управляемые марковские цепи
- •Лекция №4 Тема: Виды информационных систем
- •1. Понятие информации
- •1.1. Информационное поле.
- •1.2. Классификация и основные свойства единиц информации
- •2. Классификация информационных систем
- •2.1. По происхождению.
- •2. 2. По степени объективности существования.
- •По виду отображаемого объекта. Технические, биологические и др. Систем.
- •2.4. По виду формализованного аппарата представления системы (детерминированные и стохастические).
- •2.5. По степени взаимосвязи с окружением (открытые, закрытые, относительно обособленные):
- •2.6. По степени внутренней организации (хорошо организованные, плохо организованные системы и самоорганизующиеся). Хорошо организованные системы.
- •Плохо организованные системы.
- •Самоорганизующиеся системы.
- •2.7. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы).
- •2.8. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы); Сложность системы
- •Структурная сложность
- •Многообразие
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Задачи исследования сложных систем.
- •Задача исследования системы.
- •2. 9. По состоянию во времени (статические и динамичные). Шкалы времени
- •2.10. По обусловленности процессов управления (управляемые и самоуправляемые).
- •2.12По методам моделирования процесса развития (методы индукционного и редукционного моделирования). Лекция №5 Тема: Этапы исследования систем
- •1. Системный подход и системный анализ
- •1.1. Системный подход
- •1.2. Системные исследования
- •1.3. Системный анализ
- •2. Этапы исследования систем
- •Этап определения системы
- •2.2. Этап анализа структуры системы
- •2.3. Этап формулирования общей цели и критерия системы
- •2.4. Этап декомпозиции цели управления системой и определение потребностей в средствах управления
- •Этап выявления ресурсов и процессов, композиция целей
- •Этап прогнозирования и анализ условий развития системы
- •Этап оценки целей и средств их достижения
- •Этап отбора вариантов
- •2.9. Этап диагностики существования системы
- •2.10. Этап построения комплексной программы развития
- •2.11. Этап проектирования систем организационного управления
- •Лекция №6 Тема: Закономерности систем
- •Целостность
- •Интегративность
- •Коммуникативность
- •Иерархичность
- •5. Эквифинальность
- •6. Историчность
- •7. Закон необходимого разнообразия
- •8. Закономерность осуществимости и потенциальной эффективности систем
- •9. Закономерность целеобразования
- •Лекция №7 Тема: Уровни представления информационных систем
- •1. Методы и этапы описания систем
- •2. Неформальные методы
- •2.1. Методы мозговой атаки
- •2.2. Методы сценариев
- •2.3. Методы экспертных оценок
- •2.4. Методы типа «Дельфи»
- •3. Графические методы описания систем
- •3.1. Методы типа дерева целей
- •4. Количественные методы описания систем
- •4.1. Морфологические методы
- •4.2. Три метода морфологического исследования
- •5. Уровни описания систем
- •5.1. Высшие уровни описания систем
- •5.2. Низшие уровни описания систем
- •Лекция №8 Тема: Методы системного анализа.
- •1. Методы системного анализа
- •2. Классификация методов системного анализа
- •Методы описания исследуемого объекта
- •3. Методика системного анализа.
- •Тема: Обработка измерений при анализе систем
- •1. Метод наименьших квадратов
- •2. Сущность метода статистических испытаний (метода Монте-Карло)
- •2.1. Разыгрывание дискретной случайной величины Разыгрывание полной группы событий
- •Приближенное разыгрывание нормальной случайной величины
- •2.2. Разыгрывание двумерной случайной величины
- •Лекция №10 Тема: Этапы системного анализа
- •1.Общие положения
- •2. Содержательная постановка задачи
- •3. Построение модели изучаемой системы в общем случае.
- •4. Моделирование в условиях определенности.
- •5. Моделирование системы в условиях неопределенности
- •6. Моделирование в условиях противодействия, игровые модели.
- •Лекция № 11. Тема: Формы представления модели
- •1. Нормальная форма Коши
- •2. Системы нелинейных дифференциальных уравнений различных порядков
- •3. Графы
- •4. Гиперграфы
- •Лекция №12. Тема: Теоретико-множественное описание систем
- •1. Предположения о характере функционирования систем
- •2. Система, как отношение на абстрактных множествах
- •3. Временные, алгебраические и функциональные системы
- •4. Временные системы в терминах «вход — выход»
- •5. Входные сигналы системы.
- •6. Выходные сигналы системы.
- •Лекция №13. Тема: Динамическое описание систем
- •1. Детерминированная система без последствий
- •2. Детерминированные системы с последствием
- •3. Стохастические системы
- •4. Агрегатное описание систем
- •Лекция №14. Тема: Алгоритмы на топологических моделях.
- •1. Задачи анализа топологии
- •2. Представление информации о топологии моделей
- •3. Поиск контуров и путей по матрице смежности
- •4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •5. Сравнение алгоритмов топологического анализа
- •6. Декомпозиция модели на топологическом ранге неопределенности
- •7. Сортировка модели на топологическом ранге неопределенности
- •Моделирование систем
- •1. Моделирование систем
- •2. Математическое моделирование
- •3. Информационное моделирование
- •4. Ситуационное моделирование
5.2. Низшие уровни описания систем
Логико-математический уровень описания систем нашел широкое применение для: формализации функционирования автоматов; задания условий функционирования автоматов; изучения вычислительной способности автоматов.
При любом процессе управления или регулирования, осуществляемом живым организмом или автоматически действующей машиной либо устройством, происходит переработка входной информации в выходную. Поэтому при теоретико-информационном уровне абстрактного описания систем информация выступает как свойство объектов и явлений (процессов) порождать многообразие состояний, которые посредством отражения передаются от одного объекта к другому и запечатлеваются в его структуре (возможно, в измененном виде).
Отображение множества состояний источника во множество состояний носителя информации называется способом кодирования, а образ состояния при выбранном способе кодирования — кодом этого состояния.
Абстрагируясь от физической сущности носителей информации и рассматривая их как элементы некоторого абстрактного множества, а способ их расположения как отношение в этом множестве, приходят к абстрактному понятию кода информации как способа ее представления. При таком подходе код информации можно рассматривать как математическую модель, т. е. абстрактное множество с заданными на нем предикатами. Эти предикаты определяют тип элементов кода и расположение их друг относительно друга.
Предикат — одно из фундаментальных понятий математики — условие, сформулированное в терминах точного логико-математического языка. Предикат содержит обозначения для произвольных объектов некоторого класса (переменные). При замещении переменных именами объектов данного класса предикат задает точно определенное высказывание.
Динамический уровень абстрактного описания систем связан с представлением системы как некоторого объекта, куда в определенные моменты времени можно вводить вещество, энергию и информацию. В другие моменты времени — выводить их, т. е. динамическая система наделяется свойством иметь «входы» и «выходы», причем процессы в них могут протекать как непрерывно, так и в дискретные моменты времени. Кроме этого, для динамических систем вводится понятие «состояние системы», характеризующее ее внутреннее свойство.
Эвристический уровень абстрактного описания систем предусматривает поиски удовлетворительного решения задач управления в связи с наличием в сложной системе человека. Эврика — это догадка, основанная на общем опыте решения родственных задач. Изучение интеллектуальной деятельности человека в процессе управления имеет очень важное значение.
Эвристика вообще — это прием, позволяющий сокращать количество просматриваемых вариантов при поиске решения задачи. Причем этот прием не гарантирует наилучшее решение.
Например, человек, играя в шахматы, пользуется эвристическими приемами выработки решетя, так как продумать весь ход игры с начала до конца практически невозможно из-за слишком большого числа вариантов игры (надо обдумать около 10120 вариантов). Если на один вариант затрачивать всего 10 с, а в году около 3*107 с, то при 8-часовой работе без выходных дней и отпуска человек способен просчитать в год не более (1/3*3*107)/10=106 вариантов. Следовательно, на перебор всех возможных вариантов шахматной партии понадобится одному человеку 10114 лет.
Поэтому в настоящее время бурно развивается эвристическое программирование — программирование игровых ситуаций, доказательства теорем, перевода с одного языка на другой, дифференциальной диагностики, распознавания образов (звуковых, зрительных и т. д.).
Большое внимание сейчас уделяется созданию искусственного и гибридного интеллекта. При этом важное значение играют решение проблемы иерархически организованного перебора, создание и разработка методов отсечения заведомо невыгодных путей.
Таким образом, обзор уровней абстрактного описания систем показывает, что выбор подходящего метода формального описания при изучении той или иной реальной системы является всегда наиболее ответственным и трудным шагом в теоретико-системных построениях. Эта часть исследования почти не поддастся формализации и во многом зависит от эрудиции исследователя, его профессиональной принадлежности, целей исследования и т. д. Наибольшее значение в настоящее время в абстрактной теории систем придается теоретико-множественному, абстрактно-алгебраическому и динамическому уровням описания систем.