- •Методические рекомендации к курсу «теория систем и системный анализ»
- •Предисловие
- •Введение
- •Лекция №1 Тема: Основные понятия и определения
- •1. Краткая историческая справка
- •2. Связь предмета с другими дисциплинами учебного плана
- •3. Определение системы
- •4. Улучшение систем
- •5. Проектирование систем
- •6.Сущность и принципы системного подхода
- •7. Основные характеристики системы
- •Элемент
- •Подсистема
- •Окружающая среда
- •Структура
- •Иерархия
- •Состояние
- •Более полно состояние можно определить, если рассмотреть элементы ( компоненты, функциональные блоки), определяющие состояние.
- •Поведение
- •Внешняя среда
- •Процесс преобразования
- •Входные элементы и ресурсы
- •Выходные элементы
- •Назначение и функция
- •Признаки
- •Задачи и цели
- •Проблемы согласования целей
- •Принятия решений
- •Отношение
- •Системный подход с точки зрения управления
- •Определение границ системы в целом и границ окружающей ее среды.
- •10. Установление целей системы.
- •Описания управления системой.
- •Лекция №2 Тема: Элементы теории алгоритмов
- •1. Алфавитный оператор
- •2. Запись алгоритмов. 3. Оперативные схемы. 4. Граф-схемы алгоритмов.
- •5. Построение алгоритмов
- •Лекция №3 Тема: Элементы теории Марковских процессов
- •1. Марковский процесс
- •2. Классификация состояний
- •3. Отображение марковской цепи в виде графа
- •4. Управляемые марковские цепи
- •Лекция №4 Тема: Виды информационных систем
- •1. Понятие информации
- •1.1. Информационное поле.
- •1.2. Классификация и основные свойства единиц информации
- •2. Классификация информационных систем
- •2.1. По происхождению.
- •2. 2. По степени объективности существования.
- •По виду отображаемого объекта. Технические, биологические и др. Систем.
- •2.4. По виду формализованного аппарата представления системы (детерминированные и стохастические).
- •2.5. По степени взаимосвязи с окружением (открытые, закрытые, относительно обособленные):
- •2.6. По степени внутренней организации (хорошо организованные, плохо организованные системы и самоорганизующиеся). Хорошо организованные системы.
- •Плохо организованные системы.
- •Самоорганизующиеся системы.
- •2.7. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы).
- •2.8. По уровню сложности структуры (суперсложные, большие и сложные, подсистемы, элементы); Сложность системы
- •Структурная сложность
- •Многообразие
- •Динамическая сложность
- •Случайность в сравнении с детерминизмом и сложностью
- •Задачи исследования сложных систем.
- •Задача исследования системы.
- •2. 9. По состоянию во времени (статические и динамичные). Шкалы времени
- •2.10. По обусловленности процессов управления (управляемые и самоуправляемые).
- •2.12По методам моделирования процесса развития (методы индукционного и редукционного моделирования). Лекция №5 Тема: Этапы исследования систем
- •1. Системный подход и системный анализ
- •1.1. Системный подход
- •1.2. Системные исследования
- •1.3. Системный анализ
- •2. Этапы исследования систем
- •Этап определения системы
- •2.2. Этап анализа структуры системы
- •2.3. Этап формулирования общей цели и критерия системы
- •2.4. Этап декомпозиции цели управления системой и определение потребностей в средствах управления
- •Этап выявления ресурсов и процессов, композиция целей
- •Этап прогнозирования и анализ условий развития системы
- •Этап оценки целей и средств их достижения
- •Этап отбора вариантов
- •2.9. Этап диагностики существования системы
- •2.10. Этап построения комплексной программы развития
- •2.11. Этап проектирования систем организационного управления
- •Лекция №6 Тема: Закономерности систем
- •Целостность
- •Интегративность
- •Коммуникативность
- •Иерархичность
- •5. Эквифинальность
- •6. Историчность
- •7. Закон необходимого разнообразия
- •8. Закономерность осуществимости и потенциальной эффективности систем
- •9. Закономерность целеобразования
- •Лекция №7 Тема: Уровни представления информационных систем
- •1. Методы и этапы описания систем
- •2. Неформальные методы
- •2.1. Методы мозговой атаки
- •2.2. Методы сценариев
- •2.3. Методы экспертных оценок
- •2.4. Методы типа «Дельфи»
- •3. Графические методы описания систем
- •3.1. Методы типа дерева целей
- •4. Количественные методы описания систем
- •4.1. Морфологические методы
- •4.2. Три метода морфологического исследования
- •5. Уровни описания систем
- •5.1. Высшие уровни описания систем
- •5.2. Низшие уровни описания систем
- •Лекция №8 Тема: Методы системного анализа.
- •1. Методы системного анализа
- •2. Классификация методов системного анализа
- •Методы описания исследуемого объекта
- •3. Методика системного анализа.
- •Тема: Обработка измерений при анализе систем
- •1. Метод наименьших квадратов
- •2. Сущность метода статистических испытаний (метода Монте-Карло)
- •2.1. Разыгрывание дискретной случайной величины Разыгрывание полной группы событий
- •Приближенное разыгрывание нормальной случайной величины
- •2.2. Разыгрывание двумерной случайной величины
- •Лекция №10 Тема: Этапы системного анализа
- •1.Общие положения
- •2. Содержательная постановка задачи
- •3. Построение модели изучаемой системы в общем случае.
- •4. Моделирование в условиях определенности.
- •5. Моделирование системы в условиях неопределенности
- •6. Моделирование в условиях противодействия, игровые модели.
- •Лекция № 11. Тема: Формы представления модели
- •1. Нормальная форма Коши
- •2. Системы нелинейных дифференциальных уравнений различных порядков
- •3. Графы
- •4. Гиперграфы
- •Лекция №12. Тема: Теоретико-множественное описание систем
- •1. Предположения о характере функционирования систем
- •2. Система, как отношение на абстрактных множествах
- •3. Временные, алгебраические и функциональные системы
- •4. Временные системы в терминах «вход — выход»
- •5. Входные сигналы системы.
- •6. Выходные сигналы системы.
- •Лекция №13. Тема: Динамическое описание систем
- •1. Детерминированная система без последствий
- •2. Детерминированные системы с последствием
- •3. Стохастические системы
- •4. Агрегатное описание систем
- •Лекция №14. Тема: Алгоритмы на топологических моделях.
- •1. Задачи анализа топологии
- •2. Представление информации о топологии моделей
- •3. Поиск контуров и путей по матрице смежности
- •4. Модифицированный алгоритм поиска контуров и путей по матрице смежности
- •5. Сравнение алгоритмов топологического анализа
- •6. Декомпозиция модели на топологическом ранге неопределенности
- •7. Сортировка модели на топологическом ранге неопределенности
- •Моделирование систем
- •1. Моделирование систем
- •2. Математическое моделирование
- •3. Информационное моделирование
- •4. Ситуационное моделирование
2.4. По виду формализованного аппарата представления системы (детерминированные и стохастические).
Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени.
Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени, называются детерминированными.
Понятие «детерминированный» определяет предсказуемый характер процесса, который можно описать в виде четкого алгоритма поведения системы в зависимости от управляющих воздействий.
Стохастические системы – системы изменения в которых носят случайный характер.
Понятие «стохастичность» определяет вероятностный (непредсказуемый) характер поведение системы в зависимости от случайных факторов, которые могут вызывать нестабильность отдельных параметров системы в целом.
Например - воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.
Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования, чтобы не пропустить влияния случайных параметров. При этом, так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), выбор минимального шага в большинстве моментов времени не будет обоснован.
В подавляющем большинстве случаев при проектировании систем закладываются не максимальным, а наиболее вероятным значением случайного параметра. В этом случае получается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например - установка катодной защиты.
Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.
2.5. По степени взаимосвязи с окружением (открытые, закрытые, относительно обособленные):
Основные отличительные черты открытых систем - способность обмениваться с внешней средой энергией и информацией. Закрытые (замкнутые) системы - изолированны от внешней среды (с точностью принятой в модели).
2.6. По степени внутренней организации (хорошо организованные, плохо организованные системы и самоорганизующиеся). Хорошо организованные системы.
Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.
Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).
Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и более мелкие по сравнению с планетами элементы межпланетного пространства.
Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.
