
- •1. Абсолютные и относительные статистические величины 3
- •2. Средние величины и показатели вариации 8
- •3. Выборочное наблюдение 16
- •4. Ряды динамики 20
- •5. Индексы 30
- •Учебно-методическое обеспечение курса
- •Введение
- •1. Абсолютные и относительные статистические величины
- •1.1. Понятие абсолютных величин
- •1.2 Понятие относительных величин
- •1.3 Виды относительных величин
- •1.4. Методические указания по теме
- •1.5. Контрольные задания
- •2. Средние величины и показатели вариации
- •2.1. Понятие и общие принципы применения средних величин
- •2.2. Виды степенных средних величин
- •2.3. Правила применения средней арифметической и гармонической взвешенных
- •2.4. Особые виды степенных средних величин
- •2.5. Структурные средние
- •2.6. Средние отклонения от средних величин
- •2.7. Коэффициенты вариации
- •2.8. Определение дисперсии методом моментов
- •2.9. Свойства средней арифметической и дисперсии
- •2.10. Методические указания по теме
- •2.11. Контрольные задания
- •3. Выборочное наблюдение
- •3.1. Понятие и отбор единиц
- •3.2. Средняя ошибка выборки
- •3.3. Предельная ошибка выборки
- •3.4. Определение численности выборки
- •3.5. Методические указания по теме
- •3.6. Контрольные задания
- •4. Ряды динамики
- •4.1. Понятие и классификация рядов динамики
- •4.2. Абсолютное и относительное изменение уровней ряда
- •4.3. Средний уровень ряда и средние изменения
- •4.4. Проверка ряда на наличие тренда
- •4.5. Непосредственное выделение тренда
- •4.6. Оценка надежности уравнения тренда
- •4.7. Гармонический анализ сезонных колебаний1*
- •4.8. Прогнозирование при помощи тренда
- •4.9. Методические указания по теме
- •4.10. Контрольные задания
- •5. Индексы
- •5.1. Индивидуальные индексы
- •5.2. Простые общие индексы
- •5.3. Агрегатные общие индексы
- •5.4. Общие индексы как средние из индивидуальных
- •5.5. Индекс структурных сдвигов
- •5.6. Факторный анализ общей и частной выручки
- •5.7. Индексы фиксированного (постоянного) и переменного состава
- •5.8. Методические указания по теме
- •5.9. Контрольные задания
Какую работу нужно написать?
2.7. Коэффициенты вариации
Вариация — это несовпадение значений одной и той же статистической величины у разных объектов в силу особенностей их собственного развития, а также различия условий, в которых они находятся. Вариация имеет объективный характер и помогает познать сущность изучаемого явления. Если средняя величина сглаживает индивидуальные различия, то вариация, наоборот, их подчеркивает, устанавливая типичность или не типичность найденной средней величины для конкретной статистической совокупности. Тем самым можно делать вывод о качественности подобранных статистических данных.
Вариация измеряется с помощью относительных величин, называемых коэффициентами вариации и определяемых в виде отношения среднего отклонения к средней величине.
Поскольку среднее отклонение может определяться линейным и квадратическим способами, то соответствующими могут быть и коэффициенты вариации. Следовательно, коэффициенты вариации надо определять по формулам
–
линейный; (1.28)
–
квадратический. (1.29)
Значения коэффициента вариации изменяются от 0 до 1 и чем ближе он к нулю, тем типичнее найденная средняя величина для изучаемой статистической совокупности, а значит и качественнее подобраны статистические данные. При этом критериальным значением коэффициента вариации служит 1/3.
То есть средняя величина
считается типичной для данной совокупности
при λ
0,333 или приν
0,333. В ином случае средняя
величина не типична и требуется
пересмотреть статистическую совокупность
с целью включения в нее более объективных
статистических величин.
Обычно квадратический
коэффициент вариации несколько (примерно
на 25%) больше линейного, рассчитанные
по одним и тем же данным. А значит возможен
случай, когда λ
0,333 и ν
0,333, тогда необходимо
взять среднюю из этих коэффициентов и
по ее значению сделать окончательный
вывод о не/типичности найденной средней
величины.
С помощью линейного коэффициента вариации принципиальный вывод о типичности или не типичности средней величины можно получить проще и быстрее, чем с помощью квадратического. Однако квадратический коэффициент применяется чаще, так как существует несколько способов для вычисления дисперсии.
У такого способа оценки
вариации есть и существенный недостаток.
Действительно, пусть, например, исходная
совокупность рабочих, имеющих средний
стаж 15 лет, со стандартным отклонением
σ
= 10 лет, «состарилась» еще на 15 лет.
Теперь=
30 лет, а стандартное отклонение по-прежнему
равно 10. Совокупность, ранее бывшая
неоднородной (10/15*100=
66,7%), со временем оказывается, таким
образом, вполне однородной (10/30*100 = 33,3
%).
Поэтому возможен дополнительный анализ статистической совокупности с помощью коэффициента осцилляции, определяемого по формуле
, (1.30)
где R — размах вариации в виде разности наибольшего и наименьшего значений в совокупности статистических величин. То есть
R = Хмах –Хmin, (1.31)
где Xмax и Xmin — максимальное и минимальное значения в совокупности.
При упорядочении статистических величин в совокупности образуются группировочные интервалы. Тогда под обозначением ∆Х понимается размах интервала, а среднее интервальное значение обозначается ХИ.
В случае ориентировки только на квадратический коэффициент вариации могут применяться разные методы определения дисперсии.