Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по статистике.doc
Скачиваний:
96
Добавлен:
02.05.2014
Размер:
2.18 Mб
Скачать

2. Анализ вариационных рядов

2.1. Показатели вариации

Вариацией называется изменяемость, колеблемость величины признака. Вариация проявляется в отклонениях от средних и зависит от множества факторов, влияющих на социально-экономическое явление. Вариация бывает случайной и систематической, существует в пространстве и во времени. Показатели вариации делятся на абсолютные и относительные (таблица 2.1).

Таблица 2.1 - Показатели вариации

Показатель

Формула расчета показателя

простой

взвешенный

Абсолютные

Размах

(2.1)

Среднее

линейное

отклонение

(2.2)

* (2.3)

Дисперсия

σ2 (2.4)

(2.5)

Среднее

квадратическое отклонение

(2.6)

(2.7)

относительные

Коэффициент

вариации

(2.8)

Линейный

коэффициент

вариации

(2.9)

Коэффициент

осцилляции

(2.10)

* – Здесь fi – частота ().

Относительные показатели (коэффициент вариации, линейный коэффициент вариации, коэффициент осцилляции) строятся с учетом базы (в виде средней), выражаются в процентах и дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации

. (2.11)

Для расчета дисперсии можно использовать модифицированную формулу:

. (2.12)

Выведем эту формулу из формулы (2.5)

Для расчета дисперсии можно использовать способ отсчета от условного нуля, который позволяет упростить вычисления при больших значениях признака. Тогда дисперсия вычисляется по формуле:

, (2.13)

где h – величина интервала;

А – условный нуль, в качестве которого можно использовать как середину серединного интервала, так и середину интервала с наибольшей частотой.

2.1.1. Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю.

  2. Если у всех значений вариантов отнять какое-то постоянное число А, то средний квадрат отклонений (дисперсия) от этого не изменится

. (2.14)

Это значит, что дисперсию можно вычислить не по заданным значениям признака, а по их отклонениям от какого-то постоянного числа, например условного нуля (см. формулу 2.13).

  1. Если все значения вариантов разделить на какое-то постоянное число А, то дисперсия уменьшится в А2 раз:

. (2.15)

  1. Если распределение признака близко к нормальному или симметричному, то по правилу мажорантности (т.к. среднее квадратическое отклонение – средняя геометрическая величина, а среднее линейное отклонение – средняя арифметическая) среднее квадратическое отклонение больше среднего линейного отклонения (), причем

, . (2.16)

Размах вариации, среднее линейное и среднее квадратичное отклонение – это именованные величины. Единицей измерения у них и у исходных значений признака совпадают. Дисперсия может быть задана в ед.2 признака или в % отклонений.

2.1.2 Вариация альтернативного признака

Альтернативные признаки – два противоположных, взаимоисключающих друг друга качественных признака, которыми одни единицы совокупности обладают (значение варианта 1), а другие не обладают (значение варианта 0) (например, пол – мужской и женский, население – городское и сельское, продукция – годная и бракованная).

Частостью (p) является доля единиц, обладающих данным признаком, в общей численности совокупности и (q = 1 – p) – доля единиц, не обладающих данным признаком, в общей численности совокупности.

xi

fi

1

p

0

q = 1 – p

Средняя арифметическая альтернативного признака

. (2.18)

Дисперсия альтернативного признака

, (2.19)

т.е. дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.

Исходя из того, что p + q = 1:

; . (2.20)

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.