
- •Организация и функции статистических служб
- •Понятие о статистической информации
- •Статистическое наблюдение
- •Принципы построения статистических группировок
- •Вариационные ряды
- •Графическое отображение вариационных рядов
- •Пример 3.1.
- •Обобщающие статистические показатели
- •1. Средние величины
- •1.1 Средние степенные величины
- •1.2 Средние структурные величины
- •2. Анализ вариационных рядов
- •2.1. Показатели вариации
- •2.1.1. Свойства дисперсии
- •2.1.2 Вариация альтернативного признака
- •2.2. Виды дисперсий в совокупности, разделенной на части. Правило сложения дисперсий
- •3. Моменты распределения Показатели формы распределения
- •3.1. Моменты распределения
- •3.2. Показатели формы распределения
- •3.3. Теоретические кривые распределения
- •4. Выборочное наблюдение в статистике
- •4.1. Закон больших чисел и предельные теоремы
- •Выборочное наблюдение
- •4.2. Ошибка выборки для альтернативного признака
- •4.3 Определение необходимой численности выборки
- •4.4 Формы организации выборочного наблюдения
- •5. Статистические методы изучения взаимосвязи социально-экономических явлений
- •5.1 Регрессионный анализ
- •5.2 Корреляционный анализ
- •6. Ряды динамики
- •6.1 Анализ динамических рядов
- •6.2 Методы анализа тенденций рядов динамики
- •6.3 Сезонные колебания
- •6.4. Статистические методы прогнозирования экономических показателей
- •6.4.1. Прогнозирование на основе экстраполяции тренда
- •8.4.2. Выбор наилучшего тренда при прогнозировании
- •7. Экономические индексы
- •7.1 Общие индексы количественных показателей
- •8.2 Общие индексы качественных показателей
- •7.3 Индексы переменного и фиксированного состава. Индекс структурных сдвигов
- •Приложение Значение критерия Пирсона χ2
- •Приложение Значение t-критерия Стьюдента
- •Приложение Значение f-критерия Фишера при уровне значимости 0,05
- •Окончание приложения
6.4. Статистические методы прогнозирования экономических показателей
Прогнозирование – процесс определения возможных в будущем значений экономических показателей на основании уже известных.
Различают прогнозы по периоду упреждения: оперативные (до 1 мес.); краткосрочные (до 1 года); среднесрочные (1 – 5 лет); долгосрочные (более 5 лет).
Различают методы прогнозирования:
Экстраполяция тенденций:
- упрощенные приемы, основанные на средних показателях динамики (средние темпы роста, прироста);
- аналитические методы (метод наименьших квадратов, тренды, т.е. математические функции);
- адаптивные методы, учитывающие степень устаревания данных (методы скользящих и экспоненциальных средних, методы авторегрессии).
Методы статистического моделирования:
- статические (методы парной и множественной регрессии);
- динамические (анализ динамических рядов):
- методы агрегатного моделирования (разложение ряда на тенденции, сезонность, случайные составляющие);
- методы регрессии по взаимосвязанным рядам динамики (включаются в модель не только факторы, но и лаговые переменные);
- методы регрессии по пространственно-временной информации (для каждого ряда строится регрессионная модель по совокупности объектов).
6.4.1. Прогнозирование на основе экстраполяции тренда
Тренд – основная тенденция развития. Методы выявления тренда называются методами выравнивания временного ряда (метод наименьших квадратов, скользящей средней, конечных разностей).
При наличии тенденции в ряду динамики модель уровня динамического ряда:
, (6.25)
где – средний уровень динамического ряда;
–теоретический
(расчетный, трендовый) уровень;
–эффект тенденции;
–случайная
составляющая (остаточные колебания)
ε.
Чем
меньше остаточные колебания
,
тем выше адекватность (практическая
значимость) модели. Следовательно,
результаты прогноза зависят от типа
кривой тренда ŷ(t).
1. Линейный тренд ŷt = a0 + a1·t означает, что уровни динамики ряда изменяются с одинаковой скоростью.
a0 – начальный уровень тренда (t = 0);
a1·– средний абсолютный прирост в единицу времени.
В линейном тренде уровни динамики ряда изменяются в арифметической прогрессии, а темпы роста уровня – падающие.
2. Параболический тренд ŷt = a0 + a1·t + a2·t2 применяется, если ряд характеризуется относительным абсолютным ускорением, т.е. постоянными являются вторые разности (производные) – приросты абсолютных приростов.
a0 – начальный уровень тренда (t = 0);
a1·– средний абсолютный прирост за период;
a2·– половина абсолютного ускорения динамического ряда.
Парабола означает смену тенденций (рост сменяется падением или наоборот). Это, как правило, связано с новым этапом в развитии явления по времени. Применяется для краткосрочного прогноза.
3. Парабола кубическая характеризует три этапа развития: рост, падение и опять рост. Число наблюдений должно быть около 6–7 временных единиц на один шаг прогноза. Следовательно, чтобы применить полином третьей степени надо иметь ряд за 20 лет, и корректно это только в стабильной экономике.
4. Показательная
кривая
,
применяется при стабильном темпе роста
динамического ряда. Рост по экспоненте
означает геометрическую прогрессию
уровней ряда. Это возможно в экономике
в сравнительно небольшой период времени,
когда ограничены ресурсы, меняются
условия рынка.
a0 – начальный уровень тренда (t = 0);
a1·– средний абсолютный прирост за период;
4. Логистическая
кривая
(кривая Перла-Рида) (кривые Гомперца),
имеющая асимптоту, применяется, когда
существует ограничение на рост показателя
(уровней динамического ряда).
Если изучается динамика детской смертность, то нижняя асимптота – уровень жизни, верхняя – демографический состав населения.